বৃত্ত (ইংরেজি: Circle) হলো ইউক্লিডীয় জ্যামিতি অনুসারে একটি নির্দিষ্ট বিন্দুকে কেন্দ্র করে থেকে সমান দূরত্বে এবং একই সমতলে অবস্থিত সমস্ত বিন্দুর সংকলন। অর্থাৎ, বৃত্তের পরিধিস্থ সকল বিন্দু কেন্দ্র থেকে একটি দূরত্বে অবস্থিত।অথবা, কোনো সমতলে একটি নির্দিষ্ট বিন্দুু হতে সমদূরবর্তী সকল বিন্দুুর সেটকে বৃত্ত বলে।
অন্যভাবে বলা যায় যে, বৃত্ত একটি বিশেষ ধরনের উপবৃত্ত, যার উপকেন্দ্রদ্বয় সমবিন্দু। একটি বৃত্তীয় কনিকের অক্ষের সাপেক্ষে লম্ব সমতল কনিকটিকে ছেদ করলে প্রাপ্ত বক্ররেখাটি একটি বৃত্ত হয়।
বৃত্ত একটি আবদ্ধ বক্ররেখা বিধায় যে কোনো বৃত্তীয় স্থানকে অন্তস্থ এবং বহিস্থ এই দুই ভাগে ভাগ করে। এদের মধ্যে অন্তস্থ অঞ্চলটি সসীম এবং বহিস্থ অংশটি অসীম। অন্তস্থ অঞ্চলটি চাকতি হিসেবেও পরিচিত ।
সংজ্ঞাসমূহ
- বৃত্তচাপ: বৃত্তের সাথে সংযুক্ত বা এর পরিধির কোনো অংশ।
- অধিচাপ:অর্ধবৃত্ত অপেক্ষা বড় চাপ।
- উপচাপ:অর্ধবৃত্ত অপেক্ষা ছোট চাপ।
- কেন্দ্র: বৃত্তের সকল বিন্দুর সেট হতে সমদূরবর্তী একটি নির্দিষ্ট বিন্দু, যা বৃত্তের অন্তস্থ।

জ্যা, অভিলম্ব, স্পর্শক এবং ব্যাস
- জ্যা: এমন একটি রেখাংশ যার প্রান্তিক বিন্দুদ্বয় বৃত্তের ভেতর থাকে। একটি বৃত্তের ব্যাস-ই বৃহত্তম জ্যা।
- বৃত্তীয় ক্ষেত্র: দুটি ব্যাসার্ধ ও একটি চাপ দ্বারা পরিবেষ্টিত অঞ্চল।
- বৃত্তীয় রেখাংশ: জ্যা এর শেষ বিন্দুদ্বয়ের মধ্যে অবস্থিত অপর একটি জ্যা ও চাপ দ্বারা পরিবেষ্টিত অঞ্চল, যার কোনো কেন্দ্র নেই।
- পরিধি: বৃত্তের পরিসীমার দৈর্ঘ্য।
- ব্যাস: একটি কেন্দ্রভেদী রেখাংশ যার শেষবিন্দুদ্বয় বৃত্তের পরিসীমায় অবস্থিত। অন্যভাবে বলা যায়, ব্যাস এমন একটি রেখাংশের দৈর্ঘ্য যা বৃত্তের কোনো দুটি বিন্দুর মধ্যকার বৃহত্তম দূরত্ব। এটি একটি বিশেষ ধরনের জ্যা, সবচেয়ে দীর্ঘতম জ্যা এবং এটি ব্যাসার্ধের দ্বিগুণ। ব্যাস একটি বৃত্তকে সমান দুটি ভাগে বিভক্ত করে যার প্রতিটি অর্ধবৃত্ত।
- ব্যাসার্ধ: একটি রেখাংশ যা বৃত্তের কেন্দ্রের সাথে বৃত্তের যে কোনো একটি বিন্দুকে যুক্ত করে। কার্যত যেই রেখাংশ ব্যাসের অর্ধেক তাই ব্যাসার্ধ।
- কর্তক: একটি বর্ধিত জ্যা, যা দুটি বিন্দুতে বৃত্তকে ছেদ করে এমন একতলীয় সরলরেখা।
- অর্ধবৃত্ত: ব্যাস ও একটি চাপ (যা ব্যাসের শেষ বিন্দুদ্বয়ের সাথে সংযুক্ত) দ্বারা বেষ্টিত অংশ।
- স্পর্শক: একটি বৃত্ত বহির্ভূত একতলীয় সরলরেখা যা বৃত্ততে একটি একক বিন্দুতে স্পর্শ করে মাত্র।
ইতিহাস

মোঙ্গলীয় চিত্রাঙ্কিত সিল্কের বৃত্তীয় টুকরা
লিখিত ইতিহাস সংরক্ষণ শুরু হওয়ারও আগে থেকে বৃত্ত সম্পর্কে মানুষের ধারণা ছিল। প্রাকৃতিক বৃত্তগুলো, যেমন: চাঁদ, সূর্য ইত্যাদি পরিলক্ষিত হয়েছিলো। চাকা, যা মানব সভ্যতার অগ্রগতিতে ব্যাপক অবদান রেখেছে, তা বৃত্তাকার। চাকার সাথে সম্পর্কিত আরো কিছু আবিষ্কার, যেমন গিয়ার, চাকি প্রভৃতিও বৃত্তাকার। গণিতে বৃত্তের অধ্যয়ন পরবর্তীকালে জ্যামিতি ও ক্যালকুলাসের মত উচ্চতর শাখাগুলোর উন্নয়নে অবদান রেখেছে । প্রারম্ভিক বিজ্ঞান, বিশেষ করে জ্যামিতি এবং জ্যোতিষ শাস্ত্র এবং জ্যোতির্বিজ্ঞান মধ্যযুগীয় পণ্ডিতদের ঐশ্বরিক জ্ঞানের সাথে সম্পৃক্ত ছিলো এবং অনেকেই বৃত্তকে “ঐশ্বরিক” বা “নির্ভুল” বলে বিশ্বাস করতো।[১][২]

একটি পুরানো আরবজ্যোতির্বিদ্যা চিত্রের মধ্যে বৃত্ত

ভেতর থেকে “তুঘরুল টাওয়ার”
বৃত্তের ইতিহাসে কয়েকটি গুরুত্বপূর্ণ ঘটনা
- ১৭০০ খ্রিষ্টপূর্ব: মিশরীয় রাইন্ড ম্যাথমেটিক্যাল প্যাপিরাসে (ইংরেজি: Rhind Mathemetical Papyrus) বৃত্তের ক্ষেত্রফল নির্ণয় একটি পদ্ধতি লিপিবদ্ধ হয় । এতে ২৫৬/৮১(৩.১৬০৪৯….)কে π এর আনুমানিক মান হিসেবে বিবেচনা করা হয়।[৩]
- ৩০০ খ্রি. পূ:- ইউক্লিডের এলিমেন্টসের তৃতীয় গ্রন্থে বৃত্তের বৈশিষ্ট্যসমূহ নিয়ে বিস্তারিত আলোচনা করা হয়।
- প্লেটোর “সপ্তম পত্রে” বৃত্তের বিস্তারিত সংজ্ঞা ও ব্যাখ্যা আছে। প্লেটো একটি নিখুঁত বৃত্ত ব্যাখ্যা করেছেন এবং কীভাবে এটি কোনো অঙ্কন, শব্দ, সংজ্ঞা বা ব্যাখ্যা থেকে ভিন্ন তা ব্যাখ্যা করেছে।
- ১৮৮০ খ্রিষ্টাব্দ: লিন্ডেমান প্রমাণ করেন যে π একটি অতীন্দ্রিয় বা অপ্রত্যক্ষ সংখ্যা। এর ফলে হাজার বছর ধরে চলে আসা বৃত্তকে বর্গ রূপান্তরের সমস্যাটির সুরাহা ঘটে।[৪]
বিশ্লেষণী ফলাফল সমূহ
পরিধির দৈর্ঘ্য
প্রমাণ করা যায় যে বৃত্তের পরিধি ও ব্যাসের অনুপাত হলো একটি ধ্রুবক সংখ্যা। একে গ্রিক শব্দ π (পাই) বলা হয়। π
একটি অমূলদ সংখ্যা ও এটি ট্রান্সেনডেন্টাল সংখ্যা। অর্থাৎ একে কখনোই কোনো বীজগাণিতিক সমীকরণের মূলরূপে প্রকাশ করা যাবে না। সমতলে অবস্থিত বৃত্তের ক্ষেত্রে এর মান প্রায় ৩.১৪১৫৯২৬৫৪। পরিধির দৈর্ঘ্য C, ব্যাসার্ধ r ও ব্যাস d হলে π
এর সংজ্ঞানুযায়ী, C = π d = 2 π r .
ক্ষেত্রফল
আর্কিমিডিসের প্রমাণ অনুসারে, বৃত্তের সীমাবদ্ধ ক্ষেত্রের ক্ষেত্রফল একটি ত্রিভুজের সমান, যার ভূমি বৃত্তের পরিধি ও উচ্চতা বৃত্তের ব্যাসার্ধের সমান হবে।[৫] অর্থাৎ, π এর সাথে ব্যাসার্ধের বর্গের গুণফলই বৃত্তের ক্ষেত্রফল: A r e a = π r 2 .
ব্যাস d দ্বারা প্রকাশ করলে: A r e a = π d 2 4 ≈ 0 . 7854 d 2 ,
অন্যভাবে যদি চিন্তা করা হয়, তবে বৃত্তের পরিধিকে n সংখ্যক ক্ষুদ্র অংশে বিভক্ত করলে যদি n খুব বড় হয়, তবে প্রতিটি চাপকেই একটি ক্ষুদ্র রেখাংশ বিবেচনা করা যায়। পরিধি C হলে এই ক্ষুদ্র দৈর্ঘ্যটি C/n. এখন, এই ক্ষুদ্র রেখাগুলোর প্রান্ত কেন্দ্রের সাথে যোগ করলে উৎপন্ন প্রতিটি ত্রিভুজের বেলায় ভূমি C/n হলে লম্ব ব্যাসার্ধের সমান। কাজেই প্রতিটি ত্রিভুজের ক্ষেত্রফল Cr/(2n), এখন তাহলে বৃত্তের ক্ষেত্রফল হবে n সংখ্যক ক্ষুদ্র ত্রিভুজগুলোর সমষ্টি। অর্থাৎ, ক্ষেত্রফল=½Crn/n=½Cr. কলনবিদ্যাও একই ফলাফল দেয়।
x–y কার্তেসীয় স্থানাঙ্ক ব্যাবস্থায়, (a, b) কেন্দ্র এবং r ব্যাসার্ধ বিশিষ্ট বৃত্তের সমীকরণ হল : ( x − a ) 2 + ( y − b ) 2 = r 2 .
এই সমীকরণটি “বৃত্তীয় সমীকরণ” নামেও পরিচিত।
বৃত্তস্থঃ যেকোন বিন্দুর উপর পিথাগোরাসের উপপাদ্য প্রয়োগ করে বৃত্তের এই সমীকরণটি পাওয়া যায় । মূলবিন্দুতে কেন্দ্র হলে সমীকরণটি দাঁড়ায় : x 2 + y 2 = r 2 .
পরামিতিক সমীকরণে রূপান্তর করা হলে : x = a + r cos t , y = b + r sin t
যখন t, 0 থেকে 2π পরিসরের স্থিতিমাপে পরিবর্তনশীল, তখন জ্যামিতিক ব্যাখ্যা অনুযায়ী (a,b) ও (x,y) দ্বারা উৎপন্ন কোণটি X-অক্ষ তৈরি করে। বৃত্তের একটি বিকল্প স্থিতিমাপক হল:বন x = a + r 1 − t 2 1 + t 2 y = b + r 2 t 1 + t 2 .
এই স্থিতিমাপকে t ও r এর আনুপাতিক সম্পর্ককে জ্যামিতিক ভাবে ব্যাখ্যা করা যায় বৃত্তের ত্রিমাত্রিক রেখাচিত্রের মাধ্যমে, যা X-অক্ষ বরাবর কেন্দ্রের সমান্তরালে একটি রেখাংশে অবস্থিত।
সজাতিক স্থানাঙ্কে প্রতিটি কৌণিক ধারা বৃত্তের সমীকরণ দ্বারা প্রকাশিত হয়ঃ a x 2 + a y 2 + 2 b 1 x z + 2 b 2 y z + c z 2 = 0.
এটি প্রমাণ করা যায় যে, কৌণিক একটি বৃত্ত ঠিক যখন কৌণিক্টির মধ্যে I(1: i: 0) এবং J(1: −i: 0) বিন্দু দুটি বিদ্যমান থাকে। এই বিন্দুগুলোকে অসীম বৃত্তাকার বিন্দু বলা হয়।
বৃত্তের সমীকরণঃ
পোলার স্থানাঙ্ক ব্যবস্থায়, বৃত্তের সমীকরণ হলো: r 2 − 2 r r 0 cos ( θ − ϕ ) + r 0 2 = a 2
এখানে a হলো বৃত্তের ব্যাসার্ধ, ( r , θ )
বৃত্তের একটি সাধারণ বিন্দুর পোলার স্থানাঙ্ক, ( r 0 , ϕ )
বৃত্তের কেন্দ্রের পোলার স্থানাঙ্ক (r0 হলো মূলবিন্দু থেকে বৃত্তের কেন্দ্রের দূরত্ব এবং φ হলো বামাবর্তে উৎপন্ন কোণ, যা X-অক্ষের ধনাত্মক প্রান্ত থেকে মূলবিন্দু ও কেন্দ্রের সংযোজক সরলরেখার মাঝে অবস্থিত)। মূলবিন্দুকেন্দ্রিক একটি বৃত্তের জন্য r0 = 0, ফলে r = a। যখন r0 = a বা মূলবিন্দু ও কেন্দ্র যখন একই বিন্দু হয় তখন সমীকরণটি: r = 2 a cos ( θ − ϕ ) .
সাধারণত, সমীকরণটি r এর জন্য সমাধান করা যায়: r = r 0 cos ( θ − ϕ ) + a 2 − r 0 2 sin 2 ( θ − ϕ ) ,
বর্গমূল চিহ্নের আগে ঋণাত্মক চিহ্ন (-) থাকলে, তাও এই সমীকরণ দ্বারা একই সমাধান দিবে।
জটিল তল
জটিল তল ব্যবস্থায়, c কেন্দ্র ও r ব্যাসার্ধ বিশিষ্ট বৃত্তের সমীকরণ হলোঃ | z − c | = r
স্থিতিমাপক রূপে একে প্রকাশ করা যায়ঃ z = r e i t + c
সামান্য সরলভাবে সমীকরণটিঃ p z z ¯ + g z + g z ¯ = q বাস্তব সংখ্যা p,q ও জটিল সংখ্যা g এর জন্য এটিকে “সাধারণীকরণ বৃত্ত” ও বলা হয়। এই মানগুলোর জন্য উপর্যুক্ত সমীকরণটিকে লেখা যায়ঃ p = 1 , g = − c ¯ , q = r 2 − | c | 2
, যেন | z − c | 2 = z z ¯ − c ¯ z − c z ¯ + c c ¯
সকল সাধারণীকরণ বৃত্তই প্রকৃত বৃত্ত নয়; হয় সেগুলি স্বাভাবিক বৃত্ত, নয় তো সরলরেখা।
বৈশিষ্ট্য
- বৃত্ত হল নির্দিষ্ট পরিসীমার মধ্যে আবদ্ধ বৃহত্তম ক্ষেত্রফল।
- বৃত্ত বিশেষ ধরনের প্রতিসাম্যের অধিকারী একটি আকৃতি। কেন্দ্রভেদী যে কোন রেখাই প্রতিফলন প্রতিসম অক্ষ হিসেবে কাজ করে এবং কেন্দ্রের সাপেক্ষে যে কোন কোনে ঘূর্ণন প্রতিসাম্য তৈরি হয় ।
- প্রতিটি বৃত্তের আকৃতি অভিন্ন ।
- বৃত্তের পরিধি ও ব্যাসের অনুপাত একটি ধ্রূব সংখ্যা, একে π দ্বারা প্রকাশ করা হয় ।
- কার্তেসীয় স্থানাঙ্ক ব্যাবস্থায় মূলবিন্দুতে কেন্দ্র বিশিষ্ট একক ব্যাসার্ধের বৃত্তকে বলা হয় একক বৃত্ত ।
- যে কোন তিনটি বিন্দুগামী, যারা অসমরেখ, একটি এবং কেবলমাত্র একটি বৃত্ত রয়েছে ।