মেয়ার-ভিয়েটারস ক্রম

বিশেষ করে বীজগাণিতিক টপোলজি এবং সমসংস্থ তত্ত্বে, মেয়ার-ভিটারস ক্রম বা ম্যায়ের-ভিয়েতরিস ধারা হল একটি বীজগাণিতিক সরঞ্জাম, যা টপোগাণিতিক ক্ষেত্রের সমসংস্থ এবং সহ-সমসংস্থ হিসেবে পরিচিত বীজগাণিতিক ইনভ্যারিয়েন্টসমূহ হিসাব করতে সাহায্য করে। অষ্ট্রিয়ার গণিতবিদ ওয়ালথার মেয়ার এবং লেপল্ড ভিয়েটরিস নামক বিজ্ঞানীদ্বয় এটি আবিষ্কার করেন। এই পদ্ধতিতে একটি ক্ষেত্রকে বিভিন্ন উপক্ষেত্রে বিভক্ত করা হয়, যাতে সমসংস্থ এবং সহসমসংস্থ গ্রুপগুলো পরিমাপ করা সহজ হয়। এই ধারাটি মূল ক্ষেত্রটির (সহ)সমসংস্থ গ্রুপগুলোর সঙ্গে উপক্ষেত্রগুলোর (সহি)সমসংস্থ গ্রুপের সম্পর্ক তৈরী করে। এটি এক ধরনের স্বাভাবিক দীর্ঘ শৃঙখলিত ধারা, যার পদগুলো সম্পূর্ণ ক্ষেত্রের (সহ)সমসংস্থ গ্রুপ,উপক্ষেত্রের গ্রুপগুলোর প্রত্যক্ষ সমষ্টি এবং উপক্ষেত্রসমূহের ছেদসেটের (সহ)সমসংস্থ গ্রুপ।

মেয়ার-ভিয়েটরিস ধারা সরল সমসংস্থ এবং অদ্বৈত সমসংস্থসহ সমসংস্থ তত্ত্ব এবং সহসমসংস্থ তত্ত্বের অনেক প্রকারভেদ কে ধারণ করে। সাধারণভাবে এই ধারাটি এলিয়েনবার্গ-স্টিনরোড স্বতঃসিদ্ধসমূহকে সিদ্ধকারী তত্ত্বসমূহকে ধারণ করে এবং এতে হ্রাসকৃত এবং আপেক্ষিক (সহ)সমসংস্থ সহ অনেক প্রকারভেদ রয়েছে। বেশিরভাগ ক্ষেত্রের (সহ)সমসংস্থ গ্রুপ গুলো সরাসরি তাদের সংজ্ঞায়ন থেকে পরিমাপ করা না যাওয়ার কারণে ম্যায়ের-ভিয়েটরিস ধারা ব্যবহারের মাধ্যমে তা সম্পর্কে আংশিক তথ্য পাওয়া যায়।

টপোগণিতের অনেক ক্ষেত্র খুবই সরল কিছু ক্ষেত্রের সমন্বয়ে গঠিত হয়েছে। দুটি আচ্ছাদিত উপক্ষেত্র এবং তাদের ছেদাংশ এমনভাবে নির্বাচন, যাতে সম্পূর্ণ ক্ষেত্রের তুলনায় তাদের (সহ)সমসংস্থ গ্রুপগুলো সরল হয়, করার মাধ্যমে (সহ)সমসংস্থ হ্রাস করা যায়। সে ক্ষেত্রে এ ধারাটি মৌলিক গ্রুপের জন্য সাফাঁর ভ্যান ক্যাম্পেঁ তত্ত্ব এর সমার্থক এবং এক মাত্রার সম সংস্থের সঙ্গে স্পষ্ট সম্পর্ক বিদ্যমান।

পটভূমি , অগ্রগতি এবং ইতিহাস

১১০তম জন্মদিনে Leopold Vietoris

একটি স্থানের সমটপো গ্রুপ অথবা মৌলিক গ্রুপের মত সমসংস্থ গ্রুপ গুলো টপোগানিতিক স্থিরতায় গুরুত্বপূর্ণ। যদিও কিছু (সহ)সমসংস্থ তত্ত্ব রৈখিক বীজগণিতের সাহায্যে পরিমাপ যোগ্য, তবুও অন্যান্য গুরুত্বপূর্ণ (সহ)সমসংস্থ তত্ত্ব বিশেষ করে অদ্বৈত সমসংস্থ তত্ত্ব অশূন্য ক্ষেত্রের জন্য প্রদত্ত সংজ্ঞা হতে সরাসরি পরিমাপ যোগ্য নয়। অদ্বৈত (সহ)সমসংস্থ তত্ত্বের ক্ষেত্রে অদ্বৈত (সহ)শৃংখল এবং (সহ)চক্র গ্রুপগুলো সরাসরি ব্যবস্থাপনা প্রায়ই ব্যাপক কঠিন হয়ে পড়ে। তখন আরও দক্ষ এবং পরোক্ষ পদ্ধতির প্রয়োজন পড়ে। মেয়ার ভিয়েটারিস এমনই একটি ধারা যা কোনো ক্ষেত্রের (সহ)সমসংস্থ গ্রুপগুলোর উপক্ষেত্রের মধ্যকার সম্পর্ক এবং তাদের ছেদাংশ সম্পর্কে আংশিক তথ্য প্রদান করে।

এসব সম্পর্ককে উপস্থাপনের সবচেয়ে প্রাকৃতিক এবং চলমান পদ্ধতি হল শৃঙখলিত ধারার বীজগাণিতিক ধারণা: কিছু বস্তু (এক্ষেত্রে গ্রুপ) এবং তাদের মাঝে এমনভাবে রূপতাসমূহ (এক্ষেত্রে গ্রুপ সমরূপতা) বিদ্যমান থাকে যেন, একটির প্রতিবিম্ব পরবর্তীটির প্রাকপ্রতিবিম্ব হয়। সাধারণভাবে, এটি কোনও স্থানের (সহ)সমসংস্থ গ্রুপগুলোকে পুরোপুরি পরিমাপ করতে দেয় না। তবে টপোগণিতে ক্ষুদ্র ক্ষুদ্র প্যাচ দ্বারা তৈরী বিভিন্ন ক্ষেত্র যেমন, টপোগাণিতিক বহুধা, সিমপ্লিসিয়াল কমপ্লেক্স, অথবা সিডব্লিউ কমপ্লেক্স ইত্যাদি থাকায়, মেয়ার-ভেয়েটরিসের তত্ত্বের মতো তত্ত্বগুলো অনেকটাই প্রশস্ত এবং গভীরভাবে প্রযোজ্য।

১৯২৬ ও ১৯২৭ সালে ভিয়েনার একটি স্থানীয় বিশ্ববিদ্যালয়ে বক্তৃতা দেওয়ার সময় তার সহকর্মী ভিয়েটরিস মেয়ারকে টপোগণিতের সঙ্গে পরিচয় করিয়ে দেন।[১] তাকে বেটি সংখ্যা সম্পর্কে অনুমিত ফলাফল ও সমাধানের পথ সম্পর্কে জানানো হয়েছিলো এবং ১৯২৯ সালে তিনি তা সমাধান করেন। [২] তোরাসকে দুটি বেলনের সংযোগ বিবেচনা করে তিনি তার ফলাফলগুলো প্রয়োগ করেন। [৩][৪] ভিয়েটরিস পরবর্তীতে হাজার ১৯৩০ সালে ফলাফলগুলোকে সমসংস্থ গ্রুপের জন্য সম্পূর্ণ প্রমাণ করেন কিন্তু শৃঙ্খলিত ধারা হিসেবে তা প্রকাশ করেননি।[৫] শৃঙ্খলিত ধারার ধারণাটি সর্বপ্রথমস্যামুয়েল এলিয়েনবার্গ এবং নর্মান স্টিনরোড এর লেখা ১৯৫২ সালের বই Foundations of Algebraic Topologyতে প্রথম পাওয়া যায়। [৬] যেখানে মেয়ার এবং ভিয়েটরিস এর ফলাফলগুলো আধুনিকভাবে প্রকাশিত হয়। [৭]

অদ্বৈত সমসংস্থের জন্য মৌলিক সংস্করণ

ধরি, X একটি টপোগাণিতিক জগত এবং A, B দুটো উপজগৎ যাদের অন্তর্ভাগসমূহ X কে আচ্ছাদিত করে। (A এবং B এর অন্তর্ভাগ নিশ্ছেদ হওয়া অনাবশ্যক)

(X, A, B) ত্রয়ীর জন্য অদ্বৈত সমসংস্থ গ্রুপের মেয়ার-ভিয়েতরিস ক্রমটি একটি দীর্ঘ শৃঙখলিত ধারা, যা X, A, B, এবং ছেদসেট AB এর অদ্বৈত সমসংস্থ গ্রুপসমূহের (পূর্ণসংখ্যার গ্রুপ Z কে সহগ গ্রুপ হিসেবে রেখে) মাঝে সম্পর্ক সৃষ্টি করে। [৮] এর একটি অহ্রাসকৃত সংস্করণ এবং একটি হ্রাসকৃত সংস্করণ রয়েছে।

অহ্রাসকৃত সংস্করণ

অহ্রাসকৃত সমসংস্থের ক্ষেত্রে, মেয়ার-ভিয়েটরিস ধারা অনুযায়ী নিম্নলিখিত সম্পর্কটি শৃঙখলিত:[৯] ⋯ → H n + 1 ( X ) → ∂ ∗ H n ( A ∩ B ) → ( i ∗ , j ∗ ) H n ( A ) ⊕ H n ( B ) → k ∗ − l ∗ H n ( X ) → ∂ ∗ H n − 1 ( A ∩ B ) → ⋯ → H 0 ( A ) ⊕ H 0 ( B ) → k ∗ − l ∗ H 0 ( X ) → 0. {\displaystyle \cdots \to H_{n+1}(X)\,{\xrightarrow {\partial _{*}}}\,H_{n}(A\cap B)\,{\xrightarrow {(i_{*},j_{*})}}\,H_{n}(A)\oplus H_{n}(B)\,{\xrightarrow {k_{*}-l_{*}}}\,H_{n}(X)\,{\xrightarrow {\partial _{*}}}\,H_{n-1}(A\cap B)\to \cdots \to H_{0}(A)\oplus H_{0}(B)\,{\xrightarrow {k_{*}-l_{*}}}\,H_{0}(X)\to 0.}

এখানে i : ABA, j : ABB, k : AX, এবং l : BX হল অন্তর্ভুক্তি মানচিত্র এবং ⊕ {\displaystyle \oplus } আবেলীয় গ্রুপসমূহের প্রত্যক্ষ সমষ্টি নির্দেশ করে।

সীমানা মানচিত্র

টোরাসের উপর ∂ এর সীমানাচিত্র । ১-চক্র x = u + v হল A এবং B এর ছেদাংশে অবস্থিত দুটি ১-শৃঙখলের সমষ্টি

সীমানাচিত্র ∂ এর মাত্রা হ্রাসকরণ নিম্নোক্তভাবে সংজ্ঞায়িত করা যায়।[১০] Hn(X) এর একটি উপাদান n-চক্রের সমসংস্থ শ্রেণী x, যা, উদাহরণস্বরূপ ভরকেন্দ্রিক উপবিভাজন দ্বারা, দুটি n-শৃঙখল u এবং v এর সমষ্টি আকারে লেখা যেতে পারে, যাদের প্রতিবিম্বগুলো যথাক্রমে A এবং B তে অবস্থিত। ফলে ∂x = ∂(u + v) = 0 যেন ∂u = −∂v। এ থেকে বুঝা যায় যে, ছেদাংশ AB কে এসব (n − 1)- শৃংখল সীমানার প্রতিবিম্বসমূহ অবস্থিত। অতঃপর ∂([x]) কে Hn−1(AB) তে অবস্থিত ∂u এর শ্রেণী হিসেবে সংজ্ঞায়িত করা হয় অন্য আরেকটি decomposition x = u′ + v′ নির্বাচন [∂u] কে প্রভাবিত করে না, কারণ ∂u + ∂v = ∂x = ∂u′ + ∂v′, যা থেকে বোঝা যায় ∂u − ∂u′ = ∂(v′v), এবং তার ফলে ∂u এবং ∂u′ একই সমসংস্থ শ্রেণীতে অবস্থান করে ; অথবা ভিন্ন কোনো প্রতিনিধি x′ নির্বাচনের মাধ্যমেও নয় কারণ ∂x′ = ∂x = 0। লক্ষ্য করি যে, মেয়ার-ভিয়েটারিস ধারার মানচিত্র A এবং B এর ক্রমের উপর নির্ভর করে। সুনির্দিষ্টভাবে, সীমানাচিত্র চিহ্ন পরিবর্তন করে যদি A এবং B পারস্পরিক পরিবর্তিত হয়।

হ্রাসকৃত সংস্করণ

হ্রাসকৃত সমসংস্থের জন্যও A ∩ B ≠ ∅ {\displaystyle A\cap B\neq \emptyset } স্বীকার্য ধরে একটি মেয়ার-ভিয়েটরিস ধারা রয়েছে। [১১] এই ধারাটি ধনাত্মক মাত্রার সঙ্গে অভিন্ন এবং শেষাংশ নিম্নরূপ: ⋯ → H ~ 0 ( A ∩ B ) → ( i ∗ , j ∗ ) H ~ 0 ( A ) ⊕ H ~ 0 ( B ) → k ∗ − l ∗ H ~ 0 ( X ) → 0. {\displaystyle \cdots \to {\tilde {H}}_{0}(A\cap B)\,{\xrightarrow {(i_{*},j_{*})}}\,{\tilde {H}}_{0}(A)\oplus {\tilde {H}}_{0}(B)\,{\xrightarrow {k_{*}-l_{*}}}\,{\tilde {H}}_{0}(X)\to 0.}

সেফাঁর-ভ্যান কাম্পেঁ তত্ত্বের সঙ্গে সাদৃশ্য

মেয়ার-ভিয়েটরিস ধারা (বিশেষ করে একমাত্রিক সমসংস্থ গ্রুপের জন্য) এবং সেফাঁর-ভ্যান কাম্পেঁ তত্ত্বের সঙ্গে সাদৃশ্য রয়েছে।[১০][১২] যখনই A ∩ B {\displaystyle A\cap B} পথ-সংযুক্ত হয়, হ্রাসকৃত মেয়ার-ভিয়েটরিস ধারাটি নিম্নোক্ত ধ্রুবরূপতা প্রদান করে H 1 ( X ) ≅ ( H 1 ( A ) ⊕ H 1 ( B ) ) / Ker ( k ∗ − l ∗ ) {\displaystyle H_{1}(X)\cong (H_{1}(A)\oplus H_{1}(B))/{\text{Ker}}(k_{*}-l_{*})}

যেখানে, শৃঙখলতা অনুসারে, Ker ( k ∗ − l ∗ ) ≅ Im ( i ∗ , j ∗ ) . {\displaystyle {\text{Ker}}(k_{*}-l_{*})\cong {\text{Im}}(i_{*},j_{*}).}

এটি নিঁখুতভাবে সেফাঁ্র ভ্যান কাম্পেঁ তত্ত্বের আবেলীয়কৃত রূপ। একে মৌলিক গ্রুপ π 1 ( X ) {\displaystyle \pi _{1}(X)} (যেখানে X {\displaystyle X} পথ-সংযুক্ত) এর আবেলীয় রূপ H 1 ( X ) {\displaystyle H_{1}(X)} এর সঙ্গে তুলনা করা যেতে পারে।[১৩]

মৌলিক প্রয়োগ

k-গোলক

X = S2 এর বিশ্লেষণ

k-গোলক X = Sk এর সমসংস্থতা সম্পূর্ণভাবে নির্ণয় করতে, ধরি A এবং B, একটি (k − 1)-মাত্রিক নিরক্ষীয় গোলকের সমান ছেদাংশ বিশিষ্ট X এর দুটি অর্ধগোলক। S যেহেতুk-মাত্রিক অর্ধ গোলক এবং ক-চাকতিসমূহ পারস্পরিক রূপান্তরযোগ্য এবং সংকোচনযোগ্য, A এবং B এর সমসংস্থ গ্রুপ এক উপাদানবিশিষ্ট। ফলে, ⋯ ⟶ 0 ⟶ H ~ n ( S k ) → ∂ ∗ H ~ n − 1 ( S k − 1 ) ⟶ 0 ⟶ ⋯ {\displaystyle \cdots \longrightarrow 0\longrightarrow {\tilde {H}}_{n}\!\left(S^{k}\right)\,{\xrightarrow {\overset {}{\partial _{*}}}}\,{\tilde {H}}_{n-1}\!\left(S^{k-1}\right)\longrightarrow 0\longrightarrow \cdots }

এর ফলে শৃঙ্খলতা দ্বারা বোঝা যায় যে, ∂* মানচিত্রটি সমরূপ। সমসংস্থ গ্রুপের জন্য ০-গোলক (দুটি বিন্দু) কে ব্যবহার করে গাণিতিক আরোহ বিধি অনুসারে [১৪] H ~ n ( S k ) ≅ δ k n Z = { Z if  n = k 0 if  n ≠ k {\displaystyle {\tilde {H}}_{n}\!\left(S^{k}\right)\cong \delta _{kn}\,\mathbb {Z} ={\begin{cases}\mathbb {Z} &{\mbox{if }}n=k\\0&{\mbox{if }}n\neq k\end{cases}}} যেখানে δ Kronecker delta। গোলকের জন্য সমসংস্থ গ্রুপগুলো সম্পূর্ণরূপে বোঝার বিষয়টি সমটপো গ্রুপের বর্তমান জ্ঞানের সাথে বিচ্ছিন্ন, বিশেষ করে n > k k}”> এর ক্ষেত্রে যা প্রায় অজানা[১৫]

ক্লেন বোতল

ক্লেন বোতল (যথোপযুক্ত ধার শনাক্তকরণসহ মৌলিক বহুভুজ) A (নীল) এবং B (লাল) রেখাচিত্রে বিশ্লেষিত

মেয়ার-ভিয়েটরিস ধারার সামান্য জটিল প্রয়োগ হলো ক্লেন বোতল X এর সমসংস্থ গ্রুপগুলো পরিমাপ করা। একটি উপায় হল এমনভাবে X এর রেখা বিশ্লেষণ করা, যেন দুটি মৌবিয়াস রেখা A এবং B এর সংযোগ তাদের সীমানা বৃত্তের সঙ্গে যুক্ত থাকে। (ডানের চিত্র) অতঃপর A, B এবং তাদের ছেদ AB বৃত্ত গুলোর সঙ্গে সমটপো সদৃশ, ফলে ধারাটির অশূন্য অংশ থেকে :[১৬] 0 → H 2 ( X ) → Z   → α   Z ⊕ Z → H 1 ( X ) → 0 {\displaystyle 0\rightarrow H_{2}(X)\rightarrow \mathbb {Z} \ {\xrightarrow {\overset {}{\alpha }}}\ \mathbb {Z} \oplus \mathbb {Z} \rightarrow \,H_{1}(X)\rightarrow 0}

এবং নগণ্য অংশটি দুই এর অধিক মাত্রাবিশিষ্ট সমসংস্থকে বাদ দেয়। কেন্দ্রীয় মানচিত্র α 1 কে (2, −2) এ পাঠায়, কারণ একটি মৌবিয়াস ব্যান্ডের সীমানা বৃত্ত মূল বৃত্তের চারপাশে দুইবার আবদ্ধ হয়। সুনির্দিষ্টভাবে, α এক-এক হওয়ায় দ্বিমাত্রিক সমসংস্থও অপসারিত হয়। অবশেষে, Z2 এর ভিত্তি হিসেবে (1, 0) এবং (1, −1) কে নির্বাচন করলে, H ~ n ( X ) ≅ δ 1 n ( Z ⊕ Z 2 ) = { Z ⊕ Z 2 if  n = 1 0 if  n ≠ 1 {\displaystyle {\tilde {H}}_{n}\left(X\right)\cong \delta _{1n}\,(\mathbb {Z} \oplus \mathbb {Z} _{2})={\begin{cases}\mathbb {Z} \oplus \mathbb {Z} _{2}&{\mbox{if }}n=1\\0&{\mbox{if }}n\neq 1\end{cases}}}

কীলক সমষ্টি

দুটি ২-গোলকের কীলক সমষ্টিকে এভাবে বিশ্লেষণের ফলে K এবং L, X এর সকল সমসংস্থ গ্রুপ তৈরী করে

ধরি, দুটি ক্ষেত্র K এবং L এর কীলক সমষ্টি X ,এবং আরো মনে করি যে, চিহ্নিত ভিত্তিবিন্দু, মুক্ত নিকটবর্তিতাসমূহ, UK এবং VL, এর একটি বিকৃতি প্রত্যাহারA = KV এবং B = UL ধরলে AB = X এবং AB = UV হয়, যা গঠনগতভাবে সংকোচনযোগ্য। ফলে, এই ধারাটির হ্রাসকৃত সংস্করণের মাধ্যমে যেকোনো মাত্রা n এর জন্য :[১৭] H ~ n ( K ∨ L ) ≅ H ~ n ( K ) ⊕ H ~ n ( L ) {\displaystyle {\tilde {H}}_{n}(K\vee L)\cong {\tilde {H}}_{n}(K)\oplus {\tilde {H}}_{n}(L)}

ডানের চিত্রে X দুটি ২-গোলক K এবং L এর সমষ্টি। এই বিশেষ ক্ষেত্রে, ২-গোলকের জন্য উপরোল্লিখিত ফলাফল ব্যবহার করে, H ~ n ( S 2 ∨ S 2 ) ≅ δ 2 n ( Z ⊕ Z ) = { Z ⊕ Z if  n = 2 0 if  n ≠ 2 {\displaystyle {\tilde {H}}_{n}\left(S^{2}\vee S^{2}\right)\cong \delta _{2n}\,(\mathbb {Z} \oplus \mathbb {Z} )=\left\{{\begin{matrix}\mathbb {Z} \oplus \mathbb {Z} &{\mbox{if }}n=2\\0&{\mbox{if }}n\neq 2\end{matrix}}\right.}

নিলম্বন

০-গোলক Y এর নিলম্বন X বিশ্লেষণের ফলে X এর সকল সমসংস্থ গ্রুপ উৎপন্ন হয়।

যদি X একটি ক্ষেত্র Y এর নিলম্বন SY হয়, ধরি, দ্বিশঙ্কুর উপরে এবং নিচের ‘শীর্ষ’দ্বয় যথাক্রমে A এবং B, X এ পরস্পরের পূরক। তাহলে X হল সংকোচনশীল A এবং B এর সঙ্গে AB এর সংযোগ। পাশাপাশি, ছেদক্ষেত্র AB, Y এর সমটপো। ফলে, মেয়ার-ভিয়েটরিস ধারা অনুযায়ী, যেকোনো n এর জন্য,[১৮] H ~ n ( S Y ) ≅ H ~ n − 1 ( Y ) {\displaystyle {\tilde {H}}_{n}(SY)\cong {\tilde {H}}_{n-1}(Y)}

ডানের চিত্রটিতে ০-গোলক Y এর নিলম্বন ১-গোলক X। সাধারণভাবে লক্ষ্য করা যায় যে, k-গোলক হল (k − 1)-গোলকের নিলম্বন,যার দ্বারা আরোহ পদ্ধতিতে উপর্যুক্ত উপায়ে k-গোলকের সমসংস্থ গ্রুপসমূহকে প্রতিপাদন করা যায়।

পুনরালোচনা

আপেক্ষিক আকার

মেয়ার-ভিয়েটরিস ধারার একটি আপেক্ষিক রূপও বিদ্যমান। যদি YX এবং CADB এর সংযোগ সেট হয়, তবে শৃঙখলিত ধারাটি হল :[১৯] ⋯ → H n ( A ∩ B , C ∩ D ) → ( i ∗ , j ∗ ) H n ( A , C ) ⊕ H n ( B , D ) → k ∗ − l ∗ H n ( X , Y ) → ∂ ∗ H n − 1 ( A ∩ B , C ∩ D ) → ⋯ {\displaystyle \cdots \to H_{n}(A\cap B,C\cap D)\,{\xrightarrow {(i_{*},j_{*})}}\,H_{n}(A,C)\oplus H_{n}(B,D)\,{\xrightarrow {k_{*}-l_{*}}}\,H_{n}(X,Y)\,{\xrightarrow {\partial _{*}}}\,H_{n-1}(A\cap B,C\cap D)\to \cdots }

স্বাভাবিকতা

সমসংস্থ গ্রুপগুলো গুলো স্বাভাবিক এ কারণে যে, যদি f : X 1 → X 2 {\displaystyle f:X_{1}\to X_{2}} একটি বিচ্ছিন্ন চিত্রাংকন হয় তবে সমসংস্থ গ্রুপ f ∗ : H k ( X 1 ) → H k ( X 2 ) {\displaystyle f_{*}:H_{k}(X_{1})\to H_{k}(X_{2})} এর অনুশাসনিক অগ্রগমন রয়েছে যেন সংযোজনের অগ্রগমন এবং অগ্রগমনের সংযোজন পরস্পর সমতূল্য হয়: অর্থাৎ, ( g ∘ h ) ∗ = g ∗ ∘ h ∗ {\displaystyle (g\circ h)_{*}=g_{*}\circ h_{*}}। যদি X 1 = A 1 ∪ B 1 X 2 = A 2 ∪ B 2 and f ( A 1 ) ⊂ A 2 f ( B 1 ) ⊂ B 2 {\displaystyle {\begin{matrix}X_{1}=A_{1}\cup B_{1}\\X_{2}=A_{2}\cup B_{2}\end{matrix}}\qquad {\text{and}}\qquad {\begin{matrix}f(A_{1})\subset A_{2}\\f(B_{1})\subset B_{2}\end{matrix}}}

হয় তবুও মেয়ার-ভিয়েটরিস ধারাটি স্বাভাবিক থাকে।

তবে মেয়ার-ভিয়েটরিস ধারার সংযোগকারী রূপ, ∂ ∗ , {\displaystyle \partial _{*},} f ∗ {\displaystyle f_{*}} এর সঙ্গে বিনিময় ঘটে।[২০] নিম্নে বিনিময়যোগ্য চিত্রটি [২১] ⋯ H n + 1 ( X 1 ) ⟶ H n ( A 1 ∩ B 1 ) ⟶ H n ( A 1 ) ⊕ H n ( B 1 ) ⟶ H n ( X 1 ) ⟶ H n − 1 ( A 1 ∩ B 1 ) ⟶ ⋯ f ∗ ↓ f ∗ ↓ f ∗ ↓ f ∗ ↓ f ∗ ↓ ⋯ H n + 1 ( X 2 ) ⟶ H n ( A 2 ∩ B 2 ) ⟶ H n ( A 2 ) ⊕ H n ( B 2 ) ⟶ H n ( X 2 ) ⟶ H n − 1 ( A 2 ∩ B 2 ) ⟶ ⋯ {\displaystyle {\begin{matrix}\cdots &H_{n+1}(X_{1})&\longrightarrow &H_{n}(A_{1}\cap B_{1})&\longrightarrow &H_{n}(A_{1})\oplus H_{n}(B_{1})&\longrightarrow &H_{n}(X_{1})&\longrightarrow &H_{n-1}(A_{1}\cap B_{1})&\longrightarrow &\cdots \\&f_{*}{\Bigg \downarrow }&&f_{*}{\Bigg \downarrow }&&f_{*}{\Bigg \downarrow }&&f_{*}{\Bigg \downarrow }&&f_{*}{\Bigg \downarrow }\\\cdots &H_{n+1}(X_{2})&\longrightarrow &H_{n}(A_{2}\cap B_{2})&\longrightarrow &H_{n}(A_{2})\oplus H_{n}(B_{2})&\longrightarrow &H_{n}(X_{2})&\longrightarrow &H_{n-1}(A_{2}\cap B_{2})&\longrightarrow &\cdots \\\end{matrix}}}

সহসমসাংস্থিক সংস্করণ

G গ্রুপের মাধ্যমে অদ্বৈত সমসংস্থ গ্রুপের জন্য দীর্ঘ শৃঙখলিত ধারাটি সমসংস্থ সংস্করণের সঙ্গে দ্বৈত। এটি নিম্নরূপ:[২২] ⋯ → H n ( X ; G ) → H n ( A ; G ) ⊕ H n ( B ; G ) → H n ( A ∩ B ; G ) → H n + 1 ( X ; G ) → ⋯ {\displaystyle \cdots \to H^{n}(X;G)\to H^{n}(A;G)\oplus H^{n}(B;G)\to H^{n}(A\cap B;G)\to H^{n+1}(X;G)\to \cdots }

যেখানে মাত্রা সংরক্ষিত চিত্রাংকনগুলো অন্তর্ভুক্তির মাধ্যমে প্রভাবান্বিত সীমাবদ্ধ চিত্রাংকন। এ সম্পর্কিত আরেকটি রূপও রয়েছে।

গুরুত্বপূর্ণ ক্ষেত্র হিসেবে বাস্তব সংখ্যা R এবং এর অন্তর্ভুক্ত সকল টপোগাণিতিক ক্ষেত্র সমূহের গ্রুপ G এর সুষম গুণকের গঠনটি বিদ্যমান থাকায় দ্য রাম সহসমসংস্থ তত্ত্বের জন্য মেয়ার-ভিয়েটরিস ধারাটি নিম্নরূপ: ⋯ → H n ( X ) → ρ H n ( U ) ⊕ H n ( V ) → Δ H n ( U ∩ V ) → d ∗ H n + 1 ( X ) → ⋯ {\displaystyle \cdots \to H^{n}(X)\,{\xrightarrow {\rho }}\,H^{n}(U)\oplus H^{n}(V)\,{\xrightarrow {\Delta }}\,H^{n}(U\cap V)\,{\xrightarrow {d^{*}}}\,H^{n+1}(X)\to \cdots }

যেখানে X, ρ এর মুক্ত আচ্ছাদন {U, V} সীমাবদ্ধ চিত্রাঙ্কন এবং Δ পার্থক্যকে নির্দেশ করে। উপরোল্লিখিত চিত্রাঙ্কন ∂ ∗ {\displaystyle \partial _{*}} এর মতোই d ∗ {\displaystyle d^{*}} চিত্রাংকনটি সংজ্ঞায়িত। একে নিম্নোক্তভাবে প্রকাশ করা যায়। UV এর মধ্যে বদ্ধ অন্তরজ ω দ্বারা প্রকাশিত কোন সহসমসংস্থ শ্রেণী [ω] এর জন্য , ω কে ঐক্যবিভক্তির অধীনে মুক্ত আচ্ছাদন {U, V} এর মাধ্যমে ω U − ω V {\displaystyle \omega _{U}-\omega _{V}} দ্বারা প্রকাশ করা হয়। বহিঃস্থ অন্তরজ U এবং V উভয়ে UV কে সিদ্ধ করে এবং সুতরাং, একইসঙ্গে X এ একটি n + 1 আকারের σ কে সংজ্ঞায়িত করে। এর ফলে d([ω]) = [σ] পাওয়া যায়।

প্রতিপাদন

শৃঙখল গ্রুপের ক্ষুদ্র শৃঙখলিত ধারার সঙ্গে সংশ্লিষ্ট দীর্ঘ শৃঙখল ধারা বিবেচনা করা যাক। এক্ষেত্রে, 0 → C n ( A ∩ B ) → α C n ( A ) ⊕ C n ( B ) → β C n ( A + B ) → 0 {\displaystyle 0\to C_{n}(A\cap B)\,{\xrightarrow {\alpha }}\,C_{n}(A)\oplus C_{n}(B)\,{\xrightarrow {\beta }}\,C_{n}(A+B)\to 0}

যেখানে α(x) = (x, −x), β(x, y) = x + y, এবং AB তে অবস্থিত শৃঙখলগুলোর সমষ্টিবিশিষ্ট শৃঙখল গ্রুপ Cn(A + B)।[৯] স্পষ্টতঃ যে, X- এর অদ্বৈত ক্রমবর্তী সিমপ্লেক্সগুলো, যাদের প্রতিবিম্বগুলো A বা B এ রয়েছে, তারা সকল সমসংস্থ গ্রুপ Hn(X) উৎপন্ন করে।[২৩] অন্য কথায়, Hn(A + B) এবং Hn(X) পরস্পর সমরূপ। এটি অদ্বৈত সমসংস্থের জন্য মেয়ার-ভিয়েটরিস ধারা প্রদান করে।

একই পদ্ধতি অন্তরজ আকারের ভেক্টর ক্ষেত্রগুলোর ক্ষুদ্র শৃঙখলিত ধারার উপর প্রয়োগ করে, 0 → Ω n ( X ) → Ω n ( U ) ⊕ Ω n ( V ) → Ω n ( U ∩ V ) → 0 {\displaystyle 0\to \Omega ^{n}(X)\to \Omega ^{n}(U)\oplus \Omega ^{n}(V)\to \Omega ^{n}(U\cap V)\to 0}

যা হতে দ্য রাম সহসমসংস্থ তত্ত্বের জন্য মেয়ার-ভিয়েটরিস ধারা পাওয়া যায়। [২৪]

অন্যভাবে বলা যায়, দীর্ঘ শৃঙখলিত ধারা ব্যবহার করে সমসংস্থ তত্ত্বগুলোর জন্য প্রদত্ত এলিয়েবার্গ-স্টিনরোড স্বতঃসিদ্ধ সমূহ হতে মেয়ার-ভিয়েটরিস ধারা পাওয়া যায়।[২৫]

অন্যান্য সমসংস্থ তত্ত্ব

এলিয়েনবার্গ-স্টিনরোড স্বতঃসিদ্ধ হতে মেয়ার-ভিয়েটরিস ধারা প্রতিপাদনের জন্য মাত্রা স্বতঃসিদ্ধের প্রয়োজন হয় না ,[২৬] ফলে সাধারণ সমসংস্থ তত্ত্বে অন্তর্ভুক্ত হওয়ার মাধ্যমে এটি অসাধারণ সমসংস্থ তত্ত্বকেও ধারণ করে(যেমন টপোগাণিতিক K-তত্ত্ব এবং সহতলত্ব)

গুচ্ছ সহসমসংস্থ তত্ত্ব

গুচ্ছ সহসমসংস্থের দৃষ্টিকোণ থেকে,মেয়ার-ভিয়েটরিস ক্রমটি চেক সহসমসংস্থ তত্ত্বের সঙ্গে সম্পর্কিত। বিশেষ করে,যখন দুটি মুক্ত সেটের জন্য চেক সহসমসংস্থ নির্ণয় করতে মুক্ত আচ্ছাদন ব্যবহৃত হয়, তখন বর্ণালী ক্রমের অবরোহ হতে মেয়ার-ভিয়েটরিস ধারা উদ্ভূত হয় এবং তা উক্ত চেক সমসংস্থ তত্ত্বকে গুচ্ছ সহসমসংস্থের (কখনো কখনো মেয়ার-ভিয়েটরিস বর্ণালী ক্রমও বলা হয়) সঙ্গে সম্পর্কিত করে। [২৭] এই বিশেষ বর্ণালী ক্রমটি ইচ্ছামূলক টপোসগুলোতে বিদ্যমান।[২৮]

আরো দেখুন