চারটি সরলরেখা দ্বারা আবদ্ধ চিত্রকে চতুর্ভুজ বলে।একটি চতুর্ভুজ হল একটি বহুভুজ চার প্রান্ত সহ ইউক্লিডীয় সমতল জ্যামিতি (পার্শ্ব) এবং চারটি লম্ব (কোণ)। চতুর্ভুজের অন্যান্য নামগুলির মধ্যে রয়েছে চতুর্ভুজ (ত্রিভুজের সাদৃশ্যে) এবং টেট্রাগন (উদাহরণস্বরূপ, পেন্টাগন বা ষড়ভুজের সাদৃশ্যে) [ উদ্ধৃতিপ্রয়োজন] । সঙ্গে একটি চতুর্ভুজ A, B, C এবং D কখনও কখনও ABCD হিসাবে চিহ্নিত করা হয়।
ধরন
বৈশিষ্ট্য অনুসারে বিভিন্ন নামের চতুর্ভুজ রয়েছে। এর মধ্যে উল্লেখযোগ্য হচ্ছে: ট্রাপিজিয়াম, সামান্তরিক, রম্বস, আয়তক্ষেত্র এবং বর্গক্ষেত্র। সামান্তরিক হল এক ধরনের আয়তক্ষেত্র, যার বিপরীত বাহুগুলো সমান্তরাল। এখান থেকে প্রমাণ করা যায় যে সামান্তরিকের বিপরীত বাহু ও কোণগুলো পরস্পর সমান। সামান্তরিকের প্রতিটি কোণ সমকোণ হলে তাকে আয়ত বলে। আর যখন সামান্তরিকের চারটি বাহুই সমান, তখন এর নাম রম্বস। বর্গ হল একই সাথে রম্বস ও আয়ত। অন্যদিকে ট্রাপিজিয়াম হল এমন একটি চতুর্ভুজ, যার দুটি বাহু সমান্তরাল এবং অপর দুটি বাহু অসমান্তরাল। ট্রাপিজিয়ামের সমান্তরাল বাহু দুইটি সর্বদা অসমান, সমান হয়ে গেলে তা আর ট্রাপিজিয়াম থাকে না- সামান্তরিকে পরিণত হয়। তবে ট্রাপিজিয়ামের অসমান্তরাল বাহুগুলো সমান হতেও পারে।
১৬১১ সালে জার্মান জ্যোতির্বিদ ও গণিতবিদ ইয়োহানেস কেপলার প্রস্তাব করেছিলেন যে, বদ্ধ সজ্জা (close packing) সম্ভাব্য সবচেয়ে নিবিড় গোলক সজ্জা (sphere packing), তার নাম অনুসারে এই গাণিতিক অনুমানটির নাম রাখা হয়েছে কেপলার অনুমিতি (ইংরেজি ভাষায়: Kepler conjecture)। উল্লেখ্য বদ্ধ সজ্জা ঘনকীয় (cubic) বা ষড়ভুজীয় (hexagonal) দুই ধরনেরই হতে পারে যাদের সর্বোচ্চ ঘনত্ব π / ( 3 2 ) বা ৭৪% এর একটু বেশি।[১]
১৯৯৮ সালে মার্কিন গণিতবিদ টমাস ক্যালিস্টার হেইলস কেপলার অনুমিতি প্রমাণ করতে পেরেছেন বলে দাবী করেন। তার প্রমাণটি বেশ দীর্ঘ ছিল, তিনি Fejes Tóth কর্তৃক ১৯৫৩ সালে প্রস্তাবিত একটি পদ্ধতি অনুসরণ করে কম্পিউটার সিম্যুলেশনের মাধ্যমে অনেক ধরনের বিন্যাস নিয়ে পরীক্ষা চালিয়ে দেখার চেষ্টা করেন সকল ক্ষেত্রে অনুমিতিটি সঠিক কিনা। তার সিম্যুলেশনের কারণে বর্তমানে কেপলার অনুমিতিকে ৯৯% সঠিক বলা যায় এবং এটিকে একটি তত্ত্ব হিসেবে প্রহণ করার সময় প্রায় এসে গেছে।[২]
এই সংজ্ঞা থেকে দেখা যায় আয়তের দুই জোড়া সমান্তরাল বাহু আছে, যার অর্থ আয়তক্ষেত্র একটি সামান্তরিক। বর্গক্ষেত্র একটি বিশেষ ধরনের আয়তক্ষেত্র যার চারটি বাহুর দৈর্ঘ্য সমান; এর অর্থ বর্গ একই সাথে আয়তক্ষেত্র ও রম্বস।
দুটি বিপরীত সমান্তরাল জোড়া বাহুর মধ্যে যেটি বেশি লম্বা তার দৈর্ঘ্যকে আয়তক্ষেত্রের দৈর্ঘ্য এবং খাটো বাহুকে আয়তক্ষেত্রের প্রস্থ বলা হয়। আয়তক্ষেত্রের ক্ষেত্রফল হচ্ছে দৈর্ঘ্য ও প্রস্থের গুণফল। সংকেতে প্রকাশ করলে A = l w । উদাহরণস্বরুপ ৫ একক দৈর্ঘ্য ও ৪ একক প্রস্থের কোন আয়তক্ষেত্রের ক্ষেত্রফল ২০ বর্গ একক: 5 × 4 = 20 ।
আয়ত বিশেষ ধরনের সামান্তরিক, কারণ এর দু’ জোড়া সমান্তরাল বাহু আছে। সামান্তরিক এবং ফলত আয়তক্ষেত্রও বিশেষ ধরনের ট্রাপিজিয়াম, যার অন্ততঃ এক জোড়া বাহু সমান্তরাল হয়।
বহুভুজের দুটি বাহু মিলিত হয়ে এক একটি কোণ উৎপন্ন করে। বহুভুজের অভ্যন্তরে দুটি বাহুর ছেদ বিন্দুতে যে কোণ উৎপন্ন হয় তাকে অন্তঃকোণ বলে। বহুভুজের প্রতিটি শীর্ষ বিন্দুর জন্য কেবল একটি অন্তঃকোণ বিদ্যমান।
যদি কোন সরল বহুভুজের প্রতিটি কোণ দুই সমকোণ অর্থাৎ 180° অপেক্ষা ক্ষুদ্র হয় তবে এ বহুভুজকে উত্তল বহুভুজ বলা হয়।
বিপরীতভাবে, কোন সরল বহুভুজের একটি বাহু এবং এর সন্নিহিত বাহুর বর্ধিত রেখা যে কোণ উৎপন্ন করে তাকে বহিঃকোণ বলে।[১][২]:পৃ. ২৬১-২৬৪
ধর্ম
কোন বহুভুজের একই শীর্ষ বিন্দুতে উৎপন্ন অন্তঃকোণ ও বহিঃকোণ দুটির সমষ্টি দুই সমকোণ বা 180°;
কোন সরল বহুভুজের বাহুর সংখ্যা n হলে এর সকল অন্তঃকোণের সমষ্টি 180(n–2)° হবে। গাণিতিক আরোহ বিধি প্রয়োগ করে ফর্মুলাটি প্রমাণ করা যায়;
উত্তল বা অনুত্তল সরল বহুভুজের সকল বহিঃকোণের সমষ্টি হবে 360°;
বহুভুজের কোন শীর্ষের সংশ্লিষ্ট উভয় বাহুর ক্ষেত্রেই বহিঃকোণের পরিমাপ একই হবে, বাহুভেদে এর কোন প্রভাব নেই। কারণ শীর্ষের সংশ্লিষ্ট বাহু দুটিকে বৃদ্ধি করা হলে পরস্পরের বিপ্রতীপ কোণ উৎপন্ন হবে।
স্ব-ছেদী বহুভুজে সম্প্রসারণ
নির্দেশিত কোণের ধারণার প্রয়োগের মাধ্যমে অন্তঃকোণের ধারণাকে সঙ্গতিপূর্ণভাবে তারকা বহুভুজের ন্যায় স্ব-ছেদী বহুভুজে সম্প্রসারণ করা যেতে পারে। সাধারণভাবে স্ব-ছেদী বহুভুজ সহ যে কোন আবদ্ধ বহুভুজে অন্তঃকোণগুলোর সমষ্টি ডিগ্রি এককে 180(n–2k)° হয়। এখানে n হল বহুভুজের শীর্ষ বিন্দুর সংখ্যা এবং k অ-ঋণাত্মক সংখ্যাটি 360° পূর্ণ আবর্তনের সংখ্যা। অন্য কথায়, 360k° হল সকল বহিঃকোণের সমষ্টি। উদাহরণ স্বরূপ, সাধারণ উত্তল এবং অবতল বহুভুজের জন্য k = 1, যেহেতু বহিঃকোণগুলোর সমষ্টি 360°।
গণিতশাস্ত্রে কোনো একই অক্ষ বিশিষ্ট এবং একই শীর্ষবিন্দু বিশিষ্ট দুইটি ফাঁপা কোনককে একটি সমতল দ্বারা কাটলে যে বক্ররেখাদ্বয় পাওয়া যায় তাকে অধিবৃত্ত বলে ৷ সমতলটি অক্ষের সমান্তরাল হওয়া জরুরি নয় ৷ একটি অধিবৃত্ত বলতে একই সমতলে অবস্থিত দুইটি বক্ররেখাকেই বুঝায় ৷ এদের একটি অপরটির আয়না প্রতিচ্ছবি ৷
গাণিতিক সংজ্ঞা
কার্তেসীয় সমতলে একটি নির্দিষ্ট বিন্দু ও একটি নির্দিষ্ট সরলরেখা থেকে যে সব বিন্দুর দূরত্বের অনুপাত একটি ধ্রুবক, তাদের সেই একটি সঞ্চারপথ এবং তাকে কনিক বলা হয়।
আরেকটি সংজ্ঞাঃ উপকেন্দ্র ও দিকাক্ষ (নিয়ামক) থেকে যে চলমান বিন্দুর দূরত্বের অনুপাত ১ অপেক্ষা বড়ো একটি ধ্রুবক, তার সঞ্চারপথকে অধিবৃত্ত বা Hyperbola বলে। এক্ষেত্রে e>1, এখানে e= ecentricity বা উৎকেন্দ্রিকতা
পেশাদার জ্যোতির্বিজ্ঞান দু’টি উপশাখায় বিভক্ত: পর্যবেক্ষণমূলক ও তাত্ত্বিক। জ্যোতির্বৈজ্ঞানিক বস্তুগুলিকে পর্যবেক্ষণের মাধ্যমে তথ্য সংগ্রহ করা এবং সেই সব তথ্য পদার্থবিজ্ঞানের মূল সূত্র অনুযায়ী ব্যাখ্যা করা পর্যবেক্ষণমূলক জ্যোতির্বিজ্ঞানের কাজ। অন্যদিকে তাত্ত্বিক জ্যোতির্বিজ্ঞানে এই সব বস্তু ও মহাজাগতিক ঘটনাগুলি বর্ণনার জন্য কম্পিউটার বা অন্যান্য বিশ্লেষণধর্মী মডেল তৈরির কাজ করা হয়। জ্যোতির্বিজ্ঞানের এই দু’টি ক্ষেত্র পরস্পরের সম্পূরক। তাত্ত্বিক জ্যোতির্বিজ্ঞান পর্যবেক্ষণের ফলাফলগুলির ব্যাখ্যা অনুসন্ধান করে। অন্যদিকে পর্যবেক্ষণের মাধ্যমে তাত্ত্বিক ফলাফলগুলির সত্যতা সম্পর্কে নিশ্চিত হওয়া যায়।
বিজ্ঞানের অল্প কয়েকটি শাখায় এখনও অপেশাদারেরা প্রত্যক্ষ ভূমিকা গ্রহণ করে থাকেন। জ্যোতির্বিজ্ঞান এই শাখাগুলির অন্যতম। মূলত অস্থায়ী ঘটনাগুলি পর্যবেক্ষণ ও আবিষ্কারের ক্ষেত্রে অপেশাদার জ্যোতির্বিজ্ঞানীদের ভূমিকা উল্লেখযোগ্য। নতুন ধূমকেতু আবিষ্কারের ক্ষেত্রেও তাঁদের অবদান যথেষ্ট গুরুত্বপূর্ণ।
ইংরেজি ভাষায়অ্যাস্ট্রোনমি (Astronomy) শব্দটির অর্থ “নক্ষত্রের নিয়ম” (অথবা অনুবাদের তারতম্য অনুযায়ী “নক্ষত্র চর্চা”)। অ্যাস্ট্রোনমি শব্দটি প্রাচীন গ্রিকἀστρονομία শব্দটি থেকে উদ্ভূত। গ্রিক ἄστρον (উচ্চারণ: astron) শব্দটির অর্থ “নক্ষত্র” এবং -νομία (উচ্চারণ: -nomia) শব্দটি গ্রিক νόμος (উচ্চারণ: nomos) শব্দটি থেকে উদ্ভূত, যার অর্থ “নিয়ম” বা “চর্চা”। জ্যোতির্বিজ্ঞান ও জ্যোতিষশাস্ত্রের উৎস এক হলেও বর্তমানে এই দু’টিকে সম্পূর্ণ পৃথক বিষয় হিসেবেই ধরা হয়। জ্যোতির্বিজ্ঞানীরা মহাজাগতিক বস্তু ও ঘটনাবলির বিজ্ঞানসম্মত ব্যাখ্যা অনুসন্ধান করেন। অন্যদিকে জ্যোতিষীগণ দাবি করেন, মহাজাগতিক বস্তুগুলির অবস্থান মানুষের দৈনন্দিন জীবনের উপর প্রভাব বিস্তার করে থাকে।[৫][৬]
“জ্যোতির্বিজ্ঞান” ও “জ্যোতিঃপদার্থবিজ্ঞান” শব্দ দু’টির ব্যবহার
আলোচ্য বিষয়টিকে বোঝাতে পারিভাষিক “জ্যোতির্বিজ্ঞান” বা “জ্যোতিঃপদার্থবিজ্ঞান” শব্দ দু’টিই ব্যবহার করা যেতে পারে।[৭][৮][৯] সুস্পষ্ট আভিধানিক সংজ্ঞা অনুযায়ী, “জ্যোতির্বিজ্ঞান” হল “পৃথিবীর বায়ুমণ্ডলের বাইরে অবস্থিত বস্তু ও সংঘটিত ঘটনাবলি এবং সেগুলির প্রাকৃতিক ও রাসায়নিক গুণাবলির পর্যবেক্ষণ ও পর্যালোচনা”[১০] এবং “জ্যোতিঃপদার্থবিজ্ঞান” বলতে জ্যোতির্বিজ্ঞানের সেই শাখাটিকে বোঝায়, যেটিতে “মহাজাগতিক বস্তু ও ঘটনাবলির আচরণ, প্রাকৃতিক গুণাবলি ও গতিবিদ্যা-সংক্রান্ত পদ্ধতিগুলি” আলোচিত হয়।[১১]ফ্র্যাঙ্ক শু রচিত দ্য ফিজিক্যাল ইউনিভার্স নামক প্রাবেশিক পাঠ্যপুস্তকের ভূমিকা প্রভৃতি কয়েকটি ক্ষেত্রে বলা হয়েছে “জ্যোতির্বিজ্ঞান” শব্দটির দ্বারা বিষয়টির গুণগত পর্যালোচনা বোঝানো যেতে পারে। অন্যদিকে “জ্যোতিঃপদার্থবিজ্ঞান” শব্দটি ব্যবহা্র করা যেতে পারে বিষয়টির পদার্থবিদ্যা-সংক্রান্ত পর্যালোচনাকে।[১২] আধুনিক কালে জ্যোতির্বিজ্ঞান-সংক্রান্ত অধিকাংশ গবেষণা যেহেতু পদার্থবিজ্ঞান-সংক্রান্ত বিষয়গুলিকে নিয়ে করা হয়। সেই কারণে আধুনিক জ্যোতির্বিজ্ঞানকে বস্তুত জ্যোতিঃপদার্থবিজ্ঞানও বলা যেতে পারে।[৭] জ্যোতির্মিতির মতো কয়েকটি বিষয় অবশ্য খানিকটা জ্যোতিঃপদার্থবিজ্ঞান হলেও বিশুদ্ধভাবে জ্যোতির্বিজ্ঞান। এই বিষয়টির ক্ষেত্রে বিজ্ঞানীরা যে বিভাগে গবেষণা করছেন, তার পরিপ্রেক্ষিতে “জ্যোতির্বিজ্ঞান” ও “জ্যোতিঃপদার্থবিজ্ঞান” শব্দ দু’টি ব্যবহার করা যেতে পারে। এই ব্যবহারের নেপথ্যেও দু’টি কারণ থাকে। প্রথমত, যদি বিভাগটি ঐতিহাসিকভাবে পদার্থবিজ্ঞান বিভাগের শাখা হিসেবে স্বীকৃত হয়, সেক্ষেত্রে বিষয়টি জ্যোতিঃপদার্থবিজ্ঞান হিসেবে চিহ্নিত হতে পারে;[৮] এবং দ্বিতীয়ত কোনো পেশাদার জ্যোতির্বিজ্ঞানী যদি জ্যোতির্বিজ্ঞানের পরিবর্তে পদার্থবিজ্ঞানে ডিগ্রি অর্জন করে এই বিভাগে যোগ দেন, সেক্ষেত্রেও বিভাগটিকে জ্যোতিঃপদার্থবিজ্ঞান নামে অভিহিত করা যেতে পারে।[৯] এই বিষয়ের কয়েকটি অগ্রণী বিজ্ঞানবিষয়ক সাময়িক পত্রিকা হল দি অ্যাস্ট্রোনমিক্যাল জার্নাল, দি অ্যাস্ট্রোফিজিক্যাল জার্নাল ও অ্যাস্ট্রোনমি অ্যান্ড অ্যাস্ট্রোফিজিক্স।
ফ্রেডরিক ডে উইট কর্তৃক অঙ্কিত একটি মহাজাগতিক মানচিত্র, ১৭শ শতাব্দী
প্রাচীন যুগ
প্রাচীন জ্যোতির্বিজ্ঞান সীমায়িত ছিল খালি চোখে দৃশ্যমান মহাজাগতিক বস্তুগুলির পর্যবেক্ষণ ও সেগুলির গতিবিধি সংক্রান্ত ভবিষ্যদ্বাণীর মধ্যেই। অনুমিত হয়, একাধিক প্রাচীন সভ্যতার অধিবাসীবৃন্দ জ্যোতির্বিজ্ঞান সংক্রান্ত পর্যবেক্ষণের উদ্দেশ্যে প্রচুরি যন্ত্রপাতি জোগাড় করেছিল। প্রথাগত আকাশ পর্যবেক্ষণের কাজ ছাড়াও সেই যুগের মানমন্দিরগুলিতে ঋতুনির্ণয়ের মাধ্যমে শস্যরোপনের সময় নির্ধারণ ও বছরের দৈর্ঘ্য মাপার কাজও চলত। কৃষিকার্যের ক্ষেত্রে এই দু’টি কাজ সেকালে ছিল অত্যন্ত গুরুত্বপূর্ণ।[১৩] টেলিস্কোপ প্রভৃতি যন্ত্রপাতি আবিষ্কারের আগে পর্যন্ত নক্ষত্র পর্যবেক্ষণের কাজটি করা হত খালি চোখে। প্রাচীন মেসোপটেমিয়া, গ্রিস, পারস্য, ভারত, মিশর ও মধ্য আমেরিকায় জ্যোতির্বিজ্ঞান সংক্রান্ত গবেষণার জন্য একাধিক মানমন্দির গড়ে তোলা হয়েছিল এবং মহাবিশ্বের প্রকৃতি সম্পর্কে বিভিন্ন ধারণা নিয়ে পর্যালোচনার কাজ শুরু হয়েছিল। প্রাচীন জ্যোতির্বিজ্ঞান গবেষণার প্রধান উপজীব্য বিষয় ছিল গ্রহ ও নক্ষত্রগুলির অবস্থানগত মানচিত্র অঙ্কন। এই বিজ্ঞানটিই আধুনিক যুগে জ্যোতির্মিতি নামে পরিচিত। এই জাতীয় পর্যবেক্ষণের ফলেই গ্রহগুলির গতি সম্পর্কে মানুষের আদিম ধারণাগুলি গড়ে ওঠে এবং মহাবিশ্বে সূর্য, চাঁদ ও পৃথিবীর প্রকৃতি দার্শনিক দৃষ্টিকোণ থেকে ব্যাখ্যা করার চেষ্টা শুরু হয়। সেই যুগে মনে করা হত, পৃথিবী মহাবিশ্বের কেন্দ্রস্থলে অবস্থিত এবং সূর্য, চাঁদ ও তারাগুলি পৃথিবীর চারিদিকে ঘুরছে। এই তত্ত্বটি ভূকেন্দ্রিক মডেল বা গ্রিক দার্শনিক টলেমির নামানুসারে টলেমীয় বিশ্বতত্ত্ব নামে পরিচিত।[১৪]
প্রাচীন কালে গাণিতিক ও বিজ্ঞানসম্মত জ্যোতির্বিজ্ঞান চর্চার সূচনা একটি বিশেষ গুরুত্বপূর্ণ অধ্যায়। ব্যাবিলনীয়রা এই ধরনের জ্যোতির্বিজ্ঞান চর্চার সূত্রপাত ঘটিয়েছিলেন। পরবর্তীকালে অন্যান্য সভ্যতাগুলিতে জ্যোতির্বিজ্ঞান চর্চার যে প্রথার সূত্রপাত ঘটে, তার ভিত্তিপ্রস্তর ব্যাবিলনীয়েরা স্থাপন করেছিলেন।[১৫] তারাই প্রথম আবিষ্কার করেন যে, সারোস নামে একটি পুনরাবৃত্ত চক্রে চন্দ্রগ্রহণ ঘটে থাকে।[১৬]
ব্যাবিলনীয়দের পথ অনুসরণ করে প্রাচীন গ্রিস ও হেলেনীয় বিশ্বেও জ্যোতির্বিজ্ঞান চর্চায় উল্লেখযোগ্য অগ্রগতি হয়েছিল। মহাজাগতিক ঘটনাবলির যুক্তিসংগত বাস্তব ব্যাখ্যার অনুসন্ধানের সূত্রপাত ছিল গ্রিক জ্যোতির্বিজ্ঞানের বৈশিষ্ট্য।[১৭] খ্রিস্টপূর্ব ৩য় শতাব্দীতে অ্যারিস্টারকাস অফ সামোসচাঁদ ও সূর্যের আয়তন ও দূরত্ব হিসেব করেন এবং সৌরজগতেরসূর্যকেন্দ্রিক রূপের ধারণাটি প্রস্তাব করেন।[১৮] খ্রিস্টপূর্ব ২য় শতাব্দীতে হিপারকাসঅয়নচলন আবিষ্কার করেন এবং চাঁদের আয়তন ও দূরত্ব গণনা করেন। প্রাচীনকালে জ্যোতির্বিজ্ঞান গবেষণা সংক্রান্ত যে সব যন্ত্রগুলি আবিষ্কৃত হয়েছিল বলে জানা যায়, তার মধ্যে অ্যাস্ট্রোল্যাবের মতো কয়েকটি যন্ত্র উদ্ভাবনও করেছিলেন হিপারকাস।[১৯] হিপারকাস ১০২০টি তারার একটি পূর্ণাঙ্গ সুবিন্যস্ত তালিকা প্রস্তুত করেন এবং উত্তর গোলার্ধ থেকে দৃশ্যমান অধিকাংশ তারামণ্ডল গ্রিক জ্যোতির্বিজ্ঞান থেকেই উদ্ভূত।[২০]অ্যান্টিক্যাথেরা মেকানিজম (আনুমানিক খ্রিস্টপূর্ব ১৫০-৮০ অব্দ) ছিল একটি প্রাচীন অ্যানালগ কম্পিউটার, যা প্রস্তুত করা হয়েছিল নির্দিষ্ট তারিখে সূর্য, চাঁদ ও গ্রহগুলির অবস্থান গণনা করার জন্য। এই ধরনের জটিল প্রযুক্তিগত যন্ত্রপাতি খ্রিস্টীয় ১৪শ শতাব্দীতে ইউরোপে যান্ত্রিক জ্যোতির্বৈজ্ঞানিক ঘড়ি আবিষ্কারের আগে আসেনি।[২১]
ছয় শতাব্দীরও বেশি সময় ধরে রোমান ক্যাথলিক চার্চ জ্যোতির্বিজ্ঞান চর্চার জন্য প্রয়োজনীয় আর্থিক ও সামাজিক সহযোগিতা প্রদান করেছিল। প্রাচীন জ্ঞানচর্চার পুনরুদ্ধারের সময় থেকে মধ্যযুগের শেষভাগে সংঘটিত বৈজ্ঞানিক পুনর্জাগরণের আগে পর্যন্ত অপর কোনো প্রতিষ্ঠান জ্যোতির্বিজ্ঞান চর্চার ক্ষেত্রে এতটা সহযোগিতা করতে পারেনি। চার্চের উদ্দেশ্য অবশ্য ছিল ইস্টারের তারিখটি নির্ণয় করা।[৩৪]
বৈজ্ঞানিক বিপ্লব
রেনেসাঁর সময় নিকোলাস কোপারনিকাস সৌর সিস্টেমের সূর্যকেন্দ্রিক মডেল প্রস্তাব করেছিলেন। গ্যালিলিও গ্যালিলি এবং জোহানেস কেপলারের দ্বারা তার কাজকে প্রসারিত এবং সংশোধন করা হয়েছিল। গ্যালিলিও তার পর্যবেক্ষণকে উন্নত করার জন্য টেলিস্কোপ ব্যবহার করেছিলেন।
কেপলারই ছিলেন প্রথম ব্যক্তি যিনি সূর্যকে কেন্দ্র করে অন্যান্য গ্রহগুলির গতির বিষয়টি সঠিকভাবে বর্ণনা করেছিলেন । যাইহোক, কেপলার তার সূত্রগুলো দ্বারা একটি তত্ত্ব প্রণয়ন করতে ব্যর্থ হয়েছিলেন। অবশেষে নিউটন তাঁর সেলেস্টিয়াল গতিবিদ্যা এবং মাধ্যাকর্ষণ সূত্র দ্বারা গ্রহের গতি ব্যাখ্যা করতে পেরেছিলেন। নিউটন প্রতিফলক দূরবীনের বিকাশ ঘটিয়েছিলেন ।
দূরবীনের আকার এবং গুণগত মানের উন্নয়নের ফলে আরো আবিষ্কার সম্ভবপর হয়েেছিল।
ইংরেজ জ্যোতির্বিজ্ঞানী জন ফ্লামস্টেড ৩০০০ এরও বেশি নক্ষত্রকে তালিকাভুক্ত করেছিলনও বিস্তৃত তারকা ক্যাটালগ লাকাইল দ্বারা তৈরি হয়েছিল । জ্যোতির্বিজ্ঞানী উইলিয়াম হার্শেল নেবুলাসিটি এবং ক্লাস্টারগুলির একটি বিস্তারিত তালিকা তৈরি করেছিলেন এবং ১৭৮১ সালে তিনি ইউরেনাস গ্রহটি আবিষ্কার করেছিলেন। একটি স্টারের দূরত্ব প্রথম ১৮৩৮ সালে ঘোষণা করা হয়েছিল এবং ৬১ সাইগনি এর প্যারালাক্স ফ্রেডরিক বিসেল দ্বারা পরিমাপ করা হয়েছিল।
আঠারো-উনিশ শতকের মাঝামাঝি সময়ে অয়লার, ক্লায়র্ট এবং ডি’আলেমবারটের তিনটি গঠনগত সমস্যার গবেষণা চন্দ্র এবং গ্রহের গতি সম্পর্কে আরও নির্ভুল ভবিষ্যদ্বাণী করেছিল । এই কাজটিকে লাগরানজ এবং ল্যাপলেস দ্বারা আরও পরিমার্জিত করা হয়েছিল, যার ফলে গ্রহগুলির এবং চন্দ্রের গতিবিধি তাদের প্রতিক্রিয়া থেকে অনুমান করা যায়।
জ্যোতির্বিজ্ঞানে গুরুত্বপূর্ণ অগ্রগতিটি মূলত নতুন প্রযুক্তি স্পেকট্রোস্কোপ এবং ফটোগ্রাফি প্রবর্তনের মধ্য দিয়ে এসেছিল। ১৮১৪-১৫ সালে সূর্যের বর্ণালীতে ফ্রানহোফার প্রায় ৬০০ ব্যান্ড আবিষ্কার করেছিলেন, যা ১৮৫২ সালে কারশফ বিভিন্ন উপাদানগুলির উপস্থিতিতে এর নামকরণ করেছিলেন । তারা পৃথিবীর নিজস্ব সূর্যের সমতুল্য প্রমাণিত হয়েছে কিন্তু বিস্তৃত তাপমাত্রা এবং আকারের ভিন্নতা আছে ।
পৃথিবীর ছায়াপথের অস্তিত্ব, নীহারিকা, নক্ষত্রগুলির একটি পৃথক দল হিসেবে “বাইরের” ছায়াপথের অস্তিত্ব বিংশ শতাব্দীতে প্রমাণিত হয়েছিল। ঐ গ্যালাক্সির নিবিড় পর্যবেক্ষণের মাধ্যমে এই মহাবিশ্ব সম্প্রসারণের বিষয়টি আবিষ্কার হয়েছিল। তাত্ত্বিক জ্যোতির্বিজ্ঞান বস্তুর অস্তিত্ব যেমন কালপুরুষ এবং নিউট্রন তারা, তাছাড়া পরিলক্ষিত ঘটনা ব্যাখ্যা করতে ব্যবহৃত হয়েছে কোয়াসারস, পালসার, ব্লাজার, এবং রেডিও ছায়াপথ । বিংশ শতাব্দীর সময় মহাজাগতিক মাইক্রোওয়েভ ব্যাকগ্রাউন্ড রেডিয়েশন, হাবলের সূত্র এবং বিগ ব্যাং এর গঠন, মহাজাগতিক প্রাচুর্য দ্বারা উপলব্ধ প্রমাণ দ্বারা ব্যাপকভাবে সমর্থিত, যার ফলে ভৌত কসমোলজিতে ব্যাপক অগ্রগতি সাধিত হয়।
অবলোকন/পর্যবেক্ষণ জ্যোতির্বিদ্যা
মহাকাশগত বিষয় এবং অন্যান্য বস্তু সম্পর্কে আমাদের তথ্যের প্রধান উৎস হল দৃশ্যমান আলো আরও সাধারণভাবে বলা যায় ইলেক্ট্রোম্যাগনেটিক বিকিরণ। ইলেক্ট্রোম্যাগনেটিক বর্ণালীর পরিমার্জিত অঞ্চলের পরিপ্রেক্ষিতে অবলোকন জ্যোতির্বিজ্ঞানকে ভাগ করা যেতে পারে। মহাকর্ষের কিছু অংশ পৃথিবীর পৃষ্ঠ থেকে দেখা যেতে পারে এবং অন্য অংশগুলি উচ্চতর উচ্চতা বা পৃথিবীর বায়ুমন্ডলের বাইরে থেকে পর্যবেক্ষণযোগ্য। এই উপ-ক্ষেত্রগুলির উপর নির্দিষ্ট তথ্য নিচে দেওয়া হল।
রেডিও জ্যোতির্বিদ্যা
রেডিও জ্যোতির্বিজ্ঞান দৃশ্যমান পরিসীমার বাইরে বিকিরণ ব্যবহার করে যা প্রায় এক মিলিমিটারের চেয়ে বেশি তরঙ্গদৈর্ঘ্য। রেডিও জ্যোতির্বিদ্যা বেশিরভাগ পর্যবেক্ষণ জ্যোতির্বিজ্ঞান থেকে আলাদা, যেটি পর্যবেক্ষণকৃত রেডিও তরঙ্গকে আলাদা ফোটনসের পরিবর্তে তরঙ্গ হিসেবে গণ্য করা যায়। অতএব, রেডিও তরঙ্গের দিক এবং প্রশস্ততা পরিমাপ করা তুলনামূলকভাবে সহজ, যদিও এটি ক্ষুদ্র তরঙ্গদৈর্ঘ্যের মধ্যে সহজেই করা যায় না।
যদিও কিছু রেডিও তরঙ্গ জ্যোতির্বিদ্যাগত বস্তুর দ্বারা সরাসরি নির্গত হয়, তেজস্ক্রিয় নির্গমনের একটি পণ্য, বেশিরভাগ রেডিও নিঃসরণ দেখা যায় যা হল সিঙ্ক্রোট্রন বিকিরণের ফলাফল, যখন ইলেকট্রন চুম্বক ক্ষেত্রকে অতিক্রম করে তখন এটি উৎপন্ন হয়। উপরন্তু, ২১ সেমি এ হাইড্রোজেন বর্ণালী লাইন হল আন্তঃলেখ গ্যাস দ্বারা উৎপন্ন বর্ণালী লাইনের একটি সংখ্যা যা রেডিও তরঙ্গদৈর্ঘ্যের মধ্যে পর্যবেক্ষণযোগ্য।
বিভিন্ন ধরনের বস্তু রেডিও তরঙ্গদৈর্ঘ্যের মাধ্যমে, যেমন-সুপারনোভা, আন্তঃলেখার গ্যাস, পালসার এবং সক্রিয় গ্যালাক্টিক নিউক্লিয়াস সহ পর্যবেক্ষণযোগ্য।
ইনফ্রারেড জ্যোতির্বিদ্যা
ইনফ্রারেড জ্যোতির্বিদ্যা ইনফ্রারেড বিকিরণ শনাক্তকরণ এবং বিশ্লেষণের উপর ভিত্তি করে প্রতিষ্ঠিত হয়, তাছাড়া তরঙ্গদৈর্ঘ্য যা লাল আলোর চেয়ে ব্যাপক এবং আমাদের দৃষ্টি পরিসীমার বাইরে তা শনাক্ত করার জন্য এই জ্যোতির্বিদ্যা ব্যবহৃত হয় । ইনফ্রারেড বর্ণালী এমন বস্তুগুলি অধ্যয়ন করতে সহায়ক যা এত বেশি ঠাণ্ডা যে দৃশ্যমান আলো বিকিরণ করতে পারেনা, যেমন গ্রহ, পারসেসেলার ডিস্ক বা নিবোলা যার আলোটি ধূলিকণা দ্বারা আটকে যায়। ইনফ্রারেডের দীর্ঘ তরঙ্গদৈর্ঘ্যটি ধুলোর মেঘকে ভেদ করতে পারে যা দৃশ্যমান আলোকে ব্লক করে, যার ফলে আণবিক মেঘ এবং আকাশে আচ্ছাদিত ছোট বড় ছায়াপথগুলিকে পর্যবেক্ষণ করা যায়। ওয়াইড-ফিল্ড ইনফ্রারেড সার্ভে এক্সপ্লোরার (ডব্লিউআইএসই) থেকে পর্যবেক্ষণগুলি অসংখ্য গ্যালাক্টিক প্রোটোস্টার এবং তাদের হোস্ট স্টার ক্লাস্টারগুলির উন্মোচন করার ক্ষেত্রে বিশেষভাবে কার্যকর। দৃশ্যমান আলোর কাছাকাছি ইনফ্রারেড তরঙ্গদৈর্ঘ্যের ব্যতিক্রম ছাড়া, যেমন বিকিরণ বায়ুমণ্ডল দ্বারা ব্যাপকভাবে শোষিত হয় বা মুখোশযুক্ত তাছাড়া বায়ুমণ্ডল নিজেই উল্লেখযোগ্য ইনফ্রারেড নির্গমন উৎপাদন করে। ফলস্বরূপ, ইনফ্রারেড পর্যবেক্ষণ কেন্দ্রগুলিকে পৃথিবীর মধ্যে শুষ্ক বা উচ্চতর স্থানে বা মহাকাশে অবস্থিত হতে হবে। কিছু অণু ইনফ্রারেড এর মধ্য দিয়ে দৃঢ়ভাবে বিকিরণ ঘটে। এটি মহাকাশ গবেষণা করতে এমনকি আরও বিশেষভাবে এটি ধূমকেতুর মধ্যে জল শনাক্ত করতে পারে।
অপটিক্যাল জ্যোতির্বিদ্যা
ঐতিহাসিকভাবে অপটিক্যাল জ্যোতির্বিজ্ঞানকে দৃশ্যমান আলো জ্যোতির্বিদ্যা নামেও অভিহিত করা হয়, এটি জ্যোতির্বিজ্ঞানের প্রাচীনতম রূপ। পর্যবেক্ষণের ছবিগুলো মূলত হাত দ্বারা অঙ্কিত ছিল। ঊনবিংশ শতাব্দীর শেষের দিকে এবং বিংশ শতকের দিকে বেশিরভাগ সময় ছবিগুলি ফোটোগ্রাফিক সরঞ্জাম ব্যবহার করে তৈরি করা হয়েছিল। আধুনিক চিত্রগুলি ডিজিটাল ডিটেক্টর ব্যবহার করে তৈরি করা হয়, বিশেষ করে চার্জ-সংযুক্ত ডিভাইস (সিসিডি) ব্যবহার করে এবং আধুনিক মিডিয়ায় রেকর্ড করা হয়। যদিও দৃশ্যমান আলো নিজেই প্রায় ৪০০০ থেকে ৭০০০ Å (৪০০ এনএম থেকে ৭০০ এনএম) পর্যন্ত বিস্তৃত, কিছু কাছাকাছি অতিবেগুনী এবং নিকটবর্তী-ইনফ্রারেড বিকিরণ পর্যবেক্ষণ করার জন্য একই সরঞ্জাম ব্যবহার করা যেতে পারে।
অতিবেগুনী জ্যোতির্বিদ্যা
অতিবেগুনী জ্যোতির্বিদ্যা প্রায় ১০০ এবং ৩২০০ এ (১০ থেকে ৩২০ এনএম) মধ্যে অতিবেগুনী তরঙ্গদৈর্ঘ্যকে কাজে লাগায়। এই তরঙ্গদৈর্ঘ্যের আলো পৃথিবীর বায়ুমণ্ডল দ্বারা শোষিত হয়, এই তরঙ্গদৈর্ঘ্য পর্যবেক্ষণের জন্য উপরিভাগের বায়ুমণ্ডলে বা মহাকাশ প্রয়োজন। অতিবেগুনী জ্যোতির্বিজ্ঞান তরল বিকিরণ এবং বর্ণালী নির্গমনের বিষয়গুলি নীল নক্ষত্র (ওবি নক্ষত্র) থেকে গবেষণা করা যায় যার তরঙ্গ ব্যান্ড খুব উজ্জ্বল হয় । অন্যান্য ছায়াপথের নীল নক্ষত্রগুলি তার অন্তর্ভুক্ত, যা বিভিন্ন অতিবেগুনী সার্ভের লক্ষ্যমাত্রা হয়েছে। অতিবেগুনী আলোর মাধ্যমে সাধারণত যাদের দেখা যায় তাদের মধ্যে গ্রহীয় নীহারিকা, সুপারনোভা অবশিষ্টাংশ এবং সক্রিয় গ্যালাক্টিক নিউক্লিও অন্যতম। যাইহোক, অতিবেগুনি রশ্মিটি সহজেই মহাজাগতিক ধুলো দ্বারা শোষিত হয়, তাই অতিবেগুনী পরিমাপের একটি সমন্বয় প্রয়োজন।
এক্স-রে জ্যোতির্বিদ্যা
এক্স-রে জ্যোতির্বিজ্ঞান এক্স-রে তরঙ্গদৈর্ঘ্য ব্যবহার করে। সাধারণত, এক্স-রে বিকিরণটি সিঙ্ক্রোট্রন নির্গমন ( ইলেকট্রনগুলির চৌম্বক ক্ষেত্রের উপর ঘূর্ণনের ফলাফল), ১০৭ (১০ মিলিয়ন) কেলভিনের উপরে পাতলা গ্যাস থেকে তাপ নির্গমন, এবং ১০৭ কেলভিনের উপরে পুরু গ্যাস থেকে তাপ নির্গমন দ্বারা উৎপন্ন হয়। যেহেতু এক্স-রেগুলি পৃথিবীর বায়ুমণ্ডল দ্বারা সঞ্চারিত হয়, তাই এক্স-রে পর্যবেক্ষণগুলি উচ্চ-উচ্চতার বেলুন, রকেট বা এক্স-রে জ্যোতির্বিদ্যা উপগ্রহগুলি থেকে সম্পাদিত হবে। উল্লেখযোগ্য এক্স রে উৎসগুলো হল এক্স-রে বাইনারি, পালসার, সুপারনোভার অবশিষ্টাংশ, উপবৃত্তাকার গ্যালাক্সি, গ্যালাক্সির ক্লাস্টার এবং সক্রিয় গ্যালাক্টিক নিউক্লিয়াস।
গামা-রে জ্যোতির্বিদ্যা
গামা রশ্মি জ্যোতির্বিজ্ঞান ইলেক্ট্রোম্যাগনেটিক বর্ণালীর সংক্ষিপ্ততম তরঙ্গদৈর্ঘ্যে জ্যোতির্বিদ্যাগত বস্তুগুলি পর্যবেক্ষণ করে। গামা রশ্মিগুলি সরাসরি উপগ্রহগুলি দ্বারা পর্যবেক্ষণ করা যেতে পারে, যেমন কম্পটন গামা রে অবজারভেটরি বা বায়ুমণ্ডলীয় চেরেনকভ টেলিস্কোপ নামে বিশেষ দূরবীন দ্বারা। চেরেনকোভ টেলিস্কোপগুলি গামা রশ্মিকে সরাসরি শনাক্ত করতে পারে না বরং গামা রশ্মি যখন পৃথিবীর বায়ুমণ্ডল দ্বারা নিঃসৃত হয় ঠিক তখনি দৃশ্যমান আলোর আলোকে শনাক্ত করতে পারে ।
সর্বাধিক গামা-রে নির্গত উৎসগুলি আসলে গামা-রে বিস্ফোরণ, বস্তু যা শুধুমাত্র গামা রশ্মি উৎপাদন করে বিকল হয়ে যাওয়ার কয়েক মিলিসেকেন্ডের এবং হাজার হাজার সেকেন্ড আগে। শুধুমাত্র ১০% গামা-রে উৎসগুলি হল অস্থায়ী উৎস। এই স্থির গামা-রে নির্গমনকারীর মধ্যে পালসার, নিউট্রন স্টার এবং ব্ল্যাক হোলের মত প্রার্থী যেমন- সক্রিয় গ্যালাক্টিক নিউক্লিয়িও অন্তর্ভুক্ত।
তড়িৎচুম্বকীয় বর্ণালীর উপর ভিত্তি করে নয় এমন ক্ষেত্রসমূহ
তড়িৎচুম্বকীয় বিকিরণ ছাড়াও আরও কিছু ঘটনাগুলি পৃথিবী থেকে দেখা যায়।
নিউট্রিনো জ্যোতির্বিদ্যাতে নিউট্রিনো শনাক্তকরণের জন্য জ্যোতির্বিজ্ঞানীরা তীব্রভাবে পরিলক্ষিত ভূগর্ভস্থ সুবিধাসমূহ যেমন এসএজিই, গাল্লেক্স এবং কামোকো ২/ ৩ ব্যবহার করে। পৃথিবীর মধ্য দিয়ে প্রবাহিত নিউট্রিনোগুলির অধিকাংশই সূর্য থেকে উৎপন্ন হয়, তবে ২৪টি নিউট্রিনোও সুপারনোভা ১৯৮৭এ থেকে পাওয়া গিয়েছিল । মহাজাগতিক রশ্মি, যা খুব উচ্চ শক্তিসম্পন্ন কণা (পারমাণবিক নিউক্লিয়াস) দ্বারা গঠিত যা পৃথিবীর বায়ুমণ্ডলে প্রবেশ করলে ক্ষয় বা শোষিত হতে পারে, এর ফলে দ্বিতীয় কণাগুলির একটি ধারাপ্রবাহ হয় যা বর্তমান পর্যবেক্ষণকারীদের দ্বারা শনাক্ত করা যায়। কসমিক দণ্ড পৃথিবীর বায়ুমণ্ডলে আঘাত করলে কিছু ভবিষ্যতের নিউট্রিনো ডিটেক্টরগুলিও কণার সংস্পর্শে স্পর্শকাতর হতে পারে।
মহাকর্ষীয়-তরঙ্গ জ্যোতির্বিদ্যা একটি উদীয়মান ক্ষেত্র যা মহাকর্ষীয়-তরঙ্গ ডিটেক্টরগুলি দূরবর্তী বিশাল বস্তুর সম্পর্কে পর্যবেক্ষণীয় তথ্য সংগ্রহের কাজে নিয়োজিত করে। কিছু পর্যবেক্ষণ করা হয়েছে যেমন লেজার ইন্টারফেরোমিটার গ্ৰাভিটেশনাল অবসার্ভেটরি বা লাইগো (LIGO)। ১৪ই সেপ্টেম্বর ২০১৫ তারিখে লিগোর প্রথম আবিষ্কারটি বাইনারি ব্ল্যাক হোল থেকে মহাকর্ষীয় তরঙ্গ পর্যবেক্ষণ করার মাধ্যমে পাওয়া গিয়েছিল । দ্বিতীয় মহাকর্ষীয় তরঙ্গটি ২৬ ডিসেম্বর ২০১৫ তারিখে শনাক্ত করা হয়েছিল এবং অতিরিক্ত পর্যবেক্ষণ অব্যাহত থাকা দরকার তবে মহাকর্ষীয় তরঙ্গগুলির জন্য অত্যন্ত সংবেদনশীল যন্ত্রের প্রয়োজন।
তড়িৎচুম্বকীয় বিকিরণ, নিউট্রিনো বা মহাকর্ষীয় তরঙ্গ এবং অন্যান্য পরিপূরক তথ্য ব্যবহার করে পর্যবেক্ষণের সংমিশ্রণটি করা হয়েছে যা মাল্টি-ম্যাসেঞ্জার জ্যোতির্বিজ্ঞান নামে পরিচিত।
অ্যাস্ট্রোমেট্রি এবং মহাকাশ বলবিদ্যা
জ্যোতির্বিজ্ঞানের প্রাচীনতম ক্ষেত্রগুলির মধ্যে এটি একটি এবং সমস্ত বিজ্ঞানের মধ্যে স্বর্গীয় বস্তুর পরিমাপের জন্য তার প্রয়োজন হয়। ঐতিহাসিকভাবে, সূর্য, চাঁদ, গ্রহ এবং নক্ষত্রগুলির সঠিক অবস্থানের জন্য মহাকাশীয় বস্তু (মহাকাশীয় বস্তুগুলির ব্যবহার নির্দেশিকা পরিচালনা) এবং ক্যালেন্ডার তৈরির ক্ষেত্রেও এটি প্রয়োজনীয়।
গ্রহের অবস্থানের সঠিক পরিমাপ মাধ্যাকর্ষণ বিষয়ক বিষয়গুলোকে ভালোভাবে বুঝতে সহায়তা করেছে এবং অতীত এবং ভবিষ্যতের নির্ভুল অবস্থান নির্ধারণ করার ক্ষমতা যার আছে তাকে মহাকাশ বলবিদ্যা বলা হয়। সম্প্রতি নিকটবর্তী পৃথিবীর বস্তুর ট্র্যাকিংগুলি বস্তুর সাথে ঘনিষ্ঠ সাক্ষাত বা পৃথিবীর সম্ভাব্য সংঘর্ষের পূর্বাভাস দিবে।
নিকটবর্তী নক্ষত্রপুঞ্জের ঊর্ধ্বগামী র পরিমাপ মহাবিশ্বের স্কেল পরিমাপের জন্য ব্যবহার করা মহাকাশমুখী দূরত্বের একটি মৌলিক ভিত্তি প্রদান করে। নিকটবর্তী নক্ষত্রগুলির প্যারালাক্স পরিমাপ আরও দূরবর্তী নক্ষত্রগুলির বৈশিষ্ট্যগুলির জন্য একটি সুনির্দিষ্ট বেস-লাইন প্রদান করে কারণ তাদের বৈশিষ্ট্যগুলি তুলনা করা যায়। রাডিয়াল বেগের পরিমাপ এবং তারার সঠিক গতিকে জ্যোতির্বিজ্ঞানীরা আকাশগঙ্গার ছায়াপথের আন্দোলনকে সংগঠিত হতে সহায়তা করে। জ্যোতির্বিদ্যাগত ফলাফলগুলি ছায়াপথের অনুমানকৃত কৃষ্ণ বস্তুর(Dark matter) বণ্টন গণনা করার জন্য ব্যবহৃত হয় ।
১৯৯০-এর দশকে মাঝামাঝি সময়ে নক্ষত্রপুঞ্জের কাছাকাছি বড় পরিমাপের ঘূর্ণনকারী গ্রহের সন্ধানের জন্য স্টেলার উবল পরিমাপ পদ্ধতি ব্যবহার করা হয়েছে।
তাত্ত্বিক জ্যোতির্বিদ্যা
তাত্ত্বিক জ্যোতির্বিজ্ঞানীরা বিশ্লেষণাত্মক মডেল এবং গণনীয় সংখ্যাসূচক সিমুলেশন সহ বিভিন্ন সরঞ্জাম ব্যবহার করে ; প্রতিটির নিজস্ব বিশেষ সুবিধা আছে। বিশ্লেষণাত্মক মডেল হল একটি প্রক্রিয়া যা সাধারণত যা চলছে তার কেন্দ্রে বৃহত্তর অন্তর্দৃষ্টি প্রদানের জন্য ভাল। সংখ্যাসূচক মডেলগুলি ঘটনার অস্তিত্ব প্রকাশ করে এবং অপর্যবেক্ষিত প্রভাবগুলি প্রকাশ করে।
জ্যোতির্বিজ্ঞানে তত্ত্ববিদরা তাত্ত্বিক মডেল তৈরির চেষ্টা করেন এবং ঐ ফলাফলগুলি থেকে সেই মডেলগুলির পর্যবেক্ষণগত ফলাফলগুলির পূর্বাভাস প্রদান করে । একটি মডেল দ্বারা পূর্বাভাস দেওয়া ঘটনাটির পর্যবেক্ষণ জ্যোতির্বিজ্ঞানীদের ঘটনাটি বর্ণনা করতে বেশ কিছু বিকল্প বা বিবাদমূলক মডেল মধ্যে নির্বাচন করতে পারবেন যা ঘটনাকে ভালভাবে বর্ণনা করতে সক্ষম।
থিয়োরিস্টরা নতুন ডেটা গ্রহণ করার জন্য মডেল তৈরি বা সংশোধন করারও চেষ্টা করে। তথ্য এবং মডেল এর ফলাফলের অসঙ্গতির ক্ষেত্রে, সাধারণ প্রবণতা মডেলের ন্যূনতম পরিবর্তন করতে চেষ্টা করা হয় যাতে করে এটি তথ্য মাপসই ফলাফল উৎপাদন করতে পারে । কিছু কিছু ক্ষেত্রে সময়ের সাথে অসঙ্গতিপূর্ণ উপাত্ত সম্পূর্ণ মডেলটিকে নষ্ট করে দিতে পারে।
তাত্ত্বিক জ্যোতির্বিদদের দ্বারা পরিচালিত ঘটনার অন্তর্ভুক্ত হল: স্টেলার ডাইনামিক্স এবং বিবর্তন; ছায়াপথ গঠন; মহাবিশ্বের বৃহৎ পরিসরে বস্তুর বণ্টন; মহাজাগতিক রশ্মির উৎপত্তি; সাধারণ আপেক্ষিকতা এবং শারীরিক ব্রহ্মবিদ্যা, স্ট্রিং বিশ্বতত্ত্ব এবং এ্যাস্ট্রোপার্টিকেল পদার্থবিদ্যা । মহাজাগতিক আপেক্ষিকতা একটি বৃহৎ স্কেলে স্ট্রাকচারের বৈশিষ্ট্যগুলি হিসাব করার জন্য একটি হাতিয়ার হিসাবে কাজ করে, যার জন্য মাধ্যাকর্ষণ আবিষ্কারের ক্ষেত্রে শারীরিক ঘটনাগুলির মধ্যে গুরুত্বপূর্ণ ভূমিকা পালন করে এবং ব্ল্যাক হোল (অ্যাস্ট্রো) পদার্থবিদ্যা এবং মহাকর্ষীয় তরঙ্গের গবেষণার ভিত্তি হিসাবে কাজ করে।
জ্যোতির্বিজ্ঞানে কিছু ব্যাপকভাবে গৃহীত তত্ত্ব ও গবেষণা এবং মডেলগুলি, এখন লাম্বা-সিডিএম মডেলের মধ্যে রয়েছে বিগ ব্যাং, মহাজাগতিক মুদ্রাস্ফীতি, কৃষ্ণ বস্তু (dark matter) এবং পদার্থবিজ্ঞানের মৌলিক তত্ত্বসমূহ।
সূর্যের সক্রিয় ফোটোফেরার একটি অতিবেগুনী চিত্র যা ট্রেস স্পেস টেলিস্কোপ দ্বারা দেখা যায়। নাসা ছবির
১৯৬২ সালে নির্মিত সৌর পর্যবেক্ষণকারী লোমনিকি স্নাতক (স্লোভাকিয়া)
প্রায় আট আলোক মিনিটের দূরত্বের মধ্যে সবচেয়ে বেশি অধ্যয়নরত তারাটি হল সূর্য, সাধারণ ধারার বামন তারার শ্রেণী হল জি২ ভি যা প্রায় ৪.৬ বিলিয়ন বছর (জিওয়াইআর) পুরানো। সূর্য একটি ভ্যারিয়েবল তারকা বলে বিবেচিত হয় না, তবে এটি সূর্য-স্পট চক্র হিসাবে পরিচিত কার্যকলাপের মধ্যে পর্যায়ক্রমিক পরিবর্তনের দ্বারা পরিচালিত হয়। সূর্য-স্পট সংখ্যাটিতে এটি ১১ বছরের দোলন সম্পন্ন। সূর্য -স্পটগুলি গড় তাপমাত্রার তুলনায় অনেক কম হয় যা তীব্র চুম্বকীয় কার্যকলাপের সাথে সম্পর্কযুক্ত।
সূর্য একটি প্রধান-ধারার তারকা হয়ে উঠার পর ধীরে ধীরে তার উজ্জ্বলতা প্রায় ৪০% বৃদ্ধি পেয়েছে । সূর্য এমন উজ্জ্বলতার পর্যায়ক্রমিক পরিবর্তনের মধ্যে রয়েছে যা পৃথিবীর উপর একটি উল্লেখযোগ্য প্রভাব ফেলতে পারে । উদাহরণস্বরূপ, মাধ্যাকর্ষণ সর্বনিম্ন হওয়ার ফলে মধ্যযুগের সময় ছোট বরফ যুগের ঘটনাটি ঘটেছিল বলে মনে করা হয়।
সূর্যের দৃশ্যমান বাইরের পৃষ্ঠাকে ফটোস্ফিয়ার বলা হয়। এই স্তরের উপরে পাতলা একটি অঞ্চল যা ক্রোমোস্ফিয়ার নামে পরিচিত । এটি দ্রুত বর্ধনশীল তাপমাত্রার একটি সংক্রমণ অঞ্চল দ্বারা পরিবেষ্টিত এবং অবশেষে এটি সুপার উত্তাপ করোনা দ্বারা বেষ্টিত।
সূর্যের কেন্দ্রীয় অঞ্চলটি হল মূল, পারমাণবিক ফিউশনের জন্য যথেষ্ট তাপমাত্রা এবং চাপের একটি ভলিউম এখানে বিদ্যমান । কোরের উপরে হল বিকিরণ রশ্মির জোন, যেখানে শক্তি প্রবাহ প্লাজমা বিকিরণের মাধ্যমে সম্পন্ন হয়য় । উপরে হল পরিচলন জোন যেখানে গ্যাসের উপাদান প্রাথমিক ভাবে গ্যাসের শারীরিক স্থানচ্যুতির মাধ্যমে উত্তোলন করে যাকে বলা হয় পরিচলন। এটা বিশ্বাস করা হয় যে পরিচলন জোনের মধ্যে ভরের গতির চুম্বকীয় কার্যকলাপ তৈরি করে যা সান-স্পট তৈরি করে।
প্লাজমা পার্টিকেলের একটি সৌর বায়ু ক্রমবর্ধমানভাবে বাষ্পীভূত হতে থাকে সূর্যের বাইরের সর্বোচ্চ সীমা পর্যন্ত এটি হেলিওপোজ পর্যন্ত পৌঁছায়। সৌর বায়ু পৃথিবী অতিক্রম করে এটি পৃথিবীর চৌম্বক ক্ষেত্রের সাথে মিথষ্ক্রিয়া ঘটায় এবং সৌর বায়ুকে অগ্রাহ্য করে, কিন্তু ফাঁদ কিছু ভ্যান এলেন বিকিরণ বেল্ট তৈরি করে যা পৃথিবীকে ঢেকে দেয়। অরোরা তৈরি করা হয় তখন যখন সৌর বায়ু কণা চুম্বকীয় প্রবাহ লাইন দ্বারা পরিচালিত হয় পৃথিবীর মেরু অঞ্চলে যেখানে লাইনগুলি বায়ুমণ্ডলে অবতরণ করে।
গ্রহজনিত বিজ্ঞান
শীর্ষে কালো স্পট একটি ধুলো শয়তান মঙ্গল উপর একটি খিলান প্রাচীর উপর আরোহণ। এই চলন্ত, মার্টিন বায়ুমণ্ডল (একটি স্থলজ টর্নেডো তুলনীয়) এর ঝুলন্ত কলাম দীর্ঘ, গাঢ় স্ট্রোক তৈরি। নাসা ইমেজ
গ্রহ বিজ্ঞান হল গ্রহ, চাঁদ, বামন গ্রহ, ধূমকেতু, গ্রহাণু, এবং সূর্যের পাশে ঘূর্ণনশীল অন্যান্য বস্তুর সমাহার এবং সেইসাথে এক্সট্রাসোলার গ্রহগুলির সমাহার নিয়ে গবেষণা সংক্রান্ত বিজ্ঞান। সোলার সিস্টেম অপেক্ষাকৃত ভালভাবে অধ্যয়ন করা হয়েছে প্রাথমিকভাবে টেলিস্কোপের মাধ্যমে এবং পরবর্তীতে মহাকাশযান দ্বারা। এগুলো কিভাবে গ্রহ গঠিত এবং বিবর্তিত হয়েছে সেই ব্যাপারে ধারণা প্রদান করেছে, যদিও অনেক নতুন আবিষ্কার এখনও করা হচ্ছে।
সৌর সিস্টেমকে ভিতরের গ্রহ, গ্রহাণু বেল্ট এবং বাইরের গ্রহগুলি নিয়ে উপবিভাগে বিভক্ত করা হয়। ভূপৃষ্ঠের পার্থিব গ্রহগুলি বুধ, শুক্র, পৃথিবী এবং মঙ্গল নিয়ে গঠিত। বাইরের গ্যাসীয় বৃহৎ গ্রহগুলি হল বৃহস্পতি, শনি, ইউরেনাস এবং নেপচুন। নেপচুনের বাইরে কুইপার বেল্ট এবং অবশেষে ওর্ট ক্লাউড রয়েছে যা আলোক বর্ষ পর্যন্ত প্রসারিত হতে পারে।
সূর্যের চারপাশে প্রোটোপ্লেনেটানারি ডিস্কের মধ্যে ৪.৬ বিলিয়ন বছর আগে গ্রহগুলি গঠিত হয়েছিল। মহাকর্ষীয় আকর্ষণ, সংঘর্ষ এবং সংশ্লেষণের একটি প্রক্রিয়ার মধ্য দিয়ে ডিস্কটি বস্তুর সংমিশ্রণ সৃষ্টি করে যা সময়ের সাথে সাথে প্রোটোপ্লানেট হয়ে ওঠে। সৌর বায়ুর রশ্মির চাপ তখন অসমর্থিত বস্তু ত্যাগ করে, এবং ঐ যথেষ্ট সংখ্যক গ্রহই তাদের গ্যাসীয় বায়ুমণ্ডল বজায় রেখেছিল। চাঁদের উপরিভাগে প্রভাবশালী ক্রুটার দ্বারা প্রমাণিত হয় যে তীব্র বোমা বর্ষণের সময় গ্রহগুলি ক্রমাগত ঝাঁকানি খায় যায় বা বের করে দেয়। এই সময়কালে কিছু প্রোটোপ্ল্যানেট সংঘর্ষের শিকার হতে পারে এবং এই ধরনের সংঘর্ষের ফলে চাঁদের সৃষ্টি হতে পারে।
একটি গ্রহ একবার যথেষ্ট ভরে পৌঁছলে গ্রহের পার্থক্যের সময় বিভিন্ন ঘনত্বের উপাদান বিভক্ত হয়ে পড়ে। এই প্রক্রিয়াটি একটি পাথুরে বা ধাতব কেন্দ্র গঠন করতে পারে যা একটি আচ্ছাদন এবং বাইরের স্ফীত দ্বারা ঘিরে থাকতে পারে । কোর দৃঢ় এবং তরল অঞ্চলের অন্তর্ভুক্ত হতে পারে এবং কিছু গ্রহের কোরা তাদের নিজস্ব চৌম্বকীয় ক্ষেত্র উৎপন্ন করে, যা তাদের বায়ুমণ্ডলকে সৌর বায়ু প্রবাহ থেকে রক্ষা করতে পারে।
একটি গ্রহ বা চাঁদের অভ্যন্তরে তাপ উৎপন্ন হয় তেজস্ক্রিয় পদার্থসমূহের (যেমন ইউরেনিয়াম, তেজস্ক্রিয় ধাতু, এবং ২৬এল) মিথস্ক্রিয়া দ্বারা সৃষ্ট জোয়ারের তাপ দ্বারা। কিছু গ্রহ এবং চন্দ্র আগ্নেয় অগ্ন্যুৎপাত এবং টেকটনিকস এর ভূতাত্ত্বিক প্রক্রিয়া চালানোর জন্য যথেষ্ট তাপ জমা করে। যে বায়ুমণ্ডল জমা বা বজায় রাখে তাও বায়ু বা জল থেকে পৃষ্ঠ ক্ষয়ের মধ্য দিয়ে যেতে পারে।
নাক্ষত্রিক জ্যোতির্বিদ্যা
অ্যান্ট গ্রহের নীহারিকা। মৃত কেন্দ্রীয় তারকা থেকে গ্যাস নির্গত সাধারণ বিস্ফোরণগুলির বিশৃঙ্খল নিদর্শন বিপরীত সীমাবদ্ধ নমুনা দেখায়।
মহাবিশ্ব সম্পর্কে আমাদের বোধগম্যতার জন্য নক্ষত্র এবং বড় বড় বিবর্তনের বিষয় নিয়ে গবেষণা মৌলিক। পর্যবেক্ষণ, তাত্ত্বিক বোধগম্যতা এবং অভ্যন্তর ভাগের কম্পিউটার সিমুলেশন থেকে তারকাগুলির জ্যোতিঃপদার্থ নির্ধারণ করা হয়েছে । চন্দ্র গঠন ধুলো এবং গ্যাসের ঘন অঞ্চলে ঘটে যা দৈত্য আণবিক মেঘ হিসাবে পরিচিত। যখন অস্থিতিশীল হয়ে যায় তখন ক্লাউড টুকরা মাধ্যাকর্ষণ প্রভাবের কারণে একটি প্রোটোস্টার গঠন করতে পারে। যথেষ্ট ঘন, এবং গরম কোর অঞ্চল নিউক্লিয়ার ফিউশন বৃদ্ধি করবে, এইভাবে একটি প্রধান-ধারার তারকা তৈরি করবে।
প্রায় সব উপাদান যা হাইড্রোজেন এবং হিলিয়ামের তুলনায় ভারী তারা নক্ষত্রগুলির কোর অঞ্চলে তৈরি হয়েছিল ।
ফলপ্রসূ উপাদানের বৈশিষ্ট্য মূলত তার ভরের শুরুর উপর নির্ভর করে। আরও বৃহৎ তারকা যার উজ্জ্বলতা আরও ব্যাপক, এবং আরও দ্রুতভাবে তার হাইড্রোজেন জ্বালানি তার হিলিয়ামের মধ্যে সঞ্চালন করে। সময়ের সাথে সাথে এই হাইড্রোজেন জ্বালানি সম্পূর্ণ হিলিয়ামে রূপান্তরিত হয় এবং তারকাটি বিবর্তিত হতে শুরু করে। হিলিয়াম এর ফিউশনের জন্য উচ্চ কোর তাপমাত্রার প্রয়োজন। একটি তারকা খুব বেশি তাপমাত্রার সঙ্গে বাইরের স্তরে ধাক্কা দিবে তার ফলে এর কোরের ঘনত্ব বৃদ্ধি পায়। হিলিয়ামের জ্বালানীটি হ্রাসপ্রাপ্ত হওয়ার আগে বাইরের স্তরের দ্বারা গঠিত লাল দৈত্যটি একটি সংক্ষিপ্ত জীবনযাত্রা উপভোগ করে। খুব বড় বড় তারা বিবর্তনীয় পর্যায়েও আসতে পারে কারণ তারা ক্রমবর্ধমান ভারী উপাদানগুলিকে ফিউজ করে।
সূর্যের চূড়ান্ত ভাগ্য তার ভরের উপর নির্ভর করে, সূর্যের মূল কোর সুপারনোভার চেয়ে আট গুন বড় হয় ; যখন ছোট তারা তাদের বাহ্যিক স্তরগুলিকে উড়িয়ে দেয় এবং একটি সাদা রঙের বামন তারার আকারে নিষ্ক্রিয় কোরের পিছনে চলে যায় । বাইরের স্তরের নিক্ষেপ একটি গ্রহের নিবোলা গঠন করে। একটি সুপারনোভার অবশিষ্টাংশ হল একটি ঘন নিউট্রন স্টার, অথবা, তারা কমপক্ষে তিন গুন বড় হতে পারে সূর্য থেকে, একে বলা কালপুরুষ। কাছাকাছি ঘূর্ণায়মান বাইনারি তারাগুলি আরও জটিল বিবর্তনীয় পথ অনুসরণ করতে পারে, যেমন একটি সাদা বামন সহচরের উপর ভর স্থানান্তর যা সম্ভাব্য একটি সুপারনোভা সৃষ্টি করতে পারে। গ্রহের নিবোলা এবং সুপারনোভা ফিউশন সংমিশ্রণে উৎপাদিত “ধাতু” বিতরণ করে; তাদের ছাড়া, সব নতুন তারা (এবং তাদের গ্রহের সিস্টেম) হাইড্রোজেন এবং হিলিয়াম থেকে গঠিত হবে।
গ্যালাক্টিক জ্যোতির্বিদ্যা
আকাশগঙ্গার সর্পিল অস্ত্র পর্যবেক্ষণ মান
আমাদের সোলার সিস্টেম আকাশগঙ্গার মধ্যে আবর্তিত হয় , এই নিষ্ক্রান্ত সর্পিল ছায়াপথটি হল স্থানীয় গ্যালাক্সি গ্রুপের একটি বিশিষ্ট সদস্য। এটা হল পারস্পরিক মহাকর্ষীয় আকর্ষণ দ্বারা একসঙ্গে বিদ্যমান একটি ঘূর্ণন ভর,গ্যাস, ধুলো, তারা এবং অন্যান্য বস্তু। যেহেতু পৃথিবী বাইরের ধূলোযুক্ত বাহুর মধ্যে অবস্থিত, তাই আকাশগঙ্গার বেশির ভাগ অংশগুলি অদৃশ্য মনে হয়।
আকাশগঙ্গার কেন্দ্রস্থলে বার-আকৃতির একটি বুজ অবস্থিত যাকে অতিবড় কালপুরুষ বলে মনে করা হয় । এটি চারটি প্রাথমিক বাহু দ্বারা আবৃত যা কেন্দ্র থেকে সর্পিল বলে মনে হয়। এটি হল সক্রিয় তারকা গঠনের একটি অঞ্চল যার রয়েছে অনেক ছোট আই তারাগুচছ। এই তারাগুচ্ছ ডিস্কটি আই ২ নক্ষত্রের একটি গোলকধাঁধার অন্ধকার দ্বারা ঘিরে রয়েছে, সেইসাথে গ্লবুলার ক্লাস্টার নামে পরিচিত নক্ষত্রগুলির অপেক্ষাকৃত ঘন ঘনত্ব লক্ষ করা যায়।
আন্ততারাগুচ্ছের লাইনের মধ্যে স্পার্স ক্ষেত্রের একটি অঞ্চল রয়েছে। অপেক্ষাকৃত ঘন অঞ্চলে আণবিক হাইড্রোজেন এবং অন্যান্য উপাদানের আণবিক মেঘগুলি তারকা-গঠন অঞ্চল তৈরি করে। এটি কম্প্যাক্ট প্রাক-সৌর কোর বা গাঢ় নীহারিকা নিয়ে শুরু হয়, যা কম্প্যাক্ট প্রোটোস্টার গঠন (যা জিন্স দৈর্ঘ্য দ্বারা নির্ধারণ করা হয়) এবং পতনে মনোনিবেশ করে ।
বৃহত্তর তারাগুলি প্রদর্শিত হলে, তারা মেঘকে গ্লুইং গ্যাস এবং প্লাজমা এইচ ২ অঞ্চলে (আয়োনাইজড পারমাণবিক হাইড্রোজেন) রূপান্তরিত করে। এই নক্ষত্রগুলির কাছ থেকে উত্তেজনাপূর্ণ বায়ু এবং সুপারনোভা বিস্ফোরণগুলি মেঘকে ছড়িয়ে ছিটিয়ে দেয় এবং প্রায়ই তারা এক বা একাধিক তরুণ মুক্ত বড় ক্লাস্টারের পিছনে চলে যায়। এই ক্লাস্টারগুলি ধীরে ধীরে ছড়িয়ে পড়ে এবং তারাগুলি আকাশগঙ্গার সাথে যোগ দেয়।
আকাশগঙ্গার এবং অন্যান্য ছায়াপথের বিষয়বস্তুর কিনেমেটিক অধ্যয়নে প্রমাণিত হয়েছে যে দৃশ্যমান বস্তুর চেয়ে আরও বেশি বস্তু আছে যা হিসাব করা অসম্ভব। অন্ধকার বিষয়টি হালো ভর আয়ত্তে প্রদর্শিত হয়, যদিও এই অন্ধকার বিষয়টির প্রকৃতি এখনও অনির্দিষ্ট রয়ে গেছে।
এক্সট্রাগ্যালাক্টিক জ্যোতির্বিদ্যা
এই ছবিটি বিভিন্ন নীল, লুপ-আকৃতির বস্তু দেখায় যা একই ছায়াপথের একাধিক চিত্র থাকে, ছবির মধ্যবর্তী কাছাকাছি হলুদ ছায়াপথের ক্লাস্টারের মহাকর্ষীয় লেন্স প্রভাব দ্বারা অনুচিত। লেন্স ক্লাস্টারের মহাকর্ষীয় ক্ষেত্র দ্বারা উৎপাদিত হয় যা আরও দূরবর্তী বস্তুর ছবিটিকে বিবর্ধন ও বিকৃত করতে আলোকে বিদীর্ণ করে।
আমাদের ছায়াপথের বাইরে বস্তুর অস্তিত্ব নিয়ে গবেষণা করা হল জ্যোতির্বিজ্ঞানের একটি শাখা যা মূলত গ্যালাক্সির গঠন এবং বিবর্তন , তাদের বর্ণনা পদ্ধতি(বর্ণনা) এবং শ্রেণীবদ্ধকরণ, বৃহত্তর স্কেলে সক্রিয় ছায়াপথ পর্যবেক্ষণ, ছায়াপথের গ্রুপ এবং ক্লাস্টারগুলির সাথে সম্পর্কিত। অবশেষে, মহাবিশ্বের বৃহৎ-স্তরের কাঠামোটি বোঝার জন্য এটি খুবি গুরুত্বপূর্ণ।
সর্বাধিক ছায়াপথগুলি স্বতন্ত্র আকারে সংগঠিত হয় যা শ্রেণীবদ্ধকরণ স্কিমের জন্য অনুমতি দেয়। তারা সাধারণত সর্পিল, উপবৃত্তাকার এবং অনিয়মিত ছায়াপথগুলিতে বিভক্ত।
নামটি নির্দেশ করে উপবৃত্তাকার ছায়াপথের একটি ক্রস বিভাগীয় উপবৃত্তাকার আকৃতি রয়েছে। কোন প্রারম্ভিক দিকবিন্যাস ছাড়াই নক্ষত্রপুঞ্জ কক্ষপথে বরাবর পরিভ্রমণ করে। এই ছায়াপথগুলি অল্প বা কোন আন্তঃধরীয় ধূলিকণা ছাড়া, কয়েকটি তারকা গঠনকারী অঞ্চল এবং সাধারণত পুরনো তারা নিয়ে গঠিত। উপবৃত্তাকার ছায়াপথগুলিকে সাধারণত গ্যালাকটিক ক্লাস্টারের মূল অংশে পাওয়া যায় এবং তারা বৃহৎ ছায়াপথগুলির মাধ্যমে সংযুক্ত হয়ে থাকতে পারে।
সর্পিল ছায়াপথটি সংগঠিত হয় একটি ফ্ল্যাট, ঘূর্ণায়মান ডিস্ক, সাধারণত একটি বিশিষ্ট বুজ বা কেন্দ্রের বার নিয়ে এবং পিছনে তার বাহ্যিক উজ্জ্বল বাহু প্রদর্শন করে । বাহুগুলি হল স্টার গঠনের ধূলিমলিন অঞ্চল যার মধ্যে বিশাল নক্ষত্ররা একটি নীল রং তৈরি করে। স্পাইরাল ছায়াপথ সাধারণত হালো আকৃতির পুরনো নক্ষত্রপুঞ্জ দ্বারা ঘিরে থাকে। আকাশগঙ্গা এবং আমাদের নিকটবর্তী ছায়াপথের প্রতিবেশী অ্যান্ড্রোমিডা গ্যালাক্সি উভয়ই সর্পিল ছায়াপথ।
অনিয়মিত ছায়াপথের চেহারা বিশৃঙ্খল হয় এবং তারা সর্পিল বা উপবৃত্তাকার হয় না। সমস্ত ছায়াপথের প্রায় এক চতুর্থাংশ অনিয়মিত, এবং ছায়াপথের অদ্ভুত আকৃতি মহাকর্ষীয় মিথস্ক্রিয়ার ফলে হতে পারে।
সক্রিয় ছায়াপথ হল একটি গঠন যা এর নক্ষত্র, ধূলিকণা এবং গ্যাস ব্যতীত অন্য উৎস থেকে তার শক্তির একটি উল্লেখযোগ্য পরিমাণ নির্গত করে। এটি মূলত একটি কম্প্যাক্ট অঞ্চলের দ্বারা পরিচালিত হয়, একে একটি অতি-বৃহদায়তন কালপুরুষ বলে মনে করা হয় যা ভেতরের অংশ থেকে বেরিয়ে আসা বিকিরণ নির্গত করে।
রেডিও ছায়াপথ হল একটি সক্রিয় ছায়াপথ যা স্পেকট্রামের রেডিও অংশে খুব আলোকিত হয় এবং গ্যাসের বিশাল প্লাম বা লোবগুলি নির্গত করে। সক্রিয় ছায়াপথ ক্ষুদ্র ফ্রিকোয়েন্সি নির্গত করে এবং উচ্চ শক্তি বিকিরণ করে তাদের মধ্যে সেইফার্ট ছায়াপথ, কোয়াসার্স, এবং ব্লাজার অন্যতম । কোয়াসার্সগুলিকে জ্ঞাত মহাবিশ্বের সবচেয়ে সুদৃঢ় আলোকিত বস্তু বলে মনে করা হয়।
দৈহিক/ভৌত সৃষ্টিতত্ত্ব
সৃষ্টিতত্ত্ব(ইংরেজি ভাষায় Cosmology) (গ্রিক κόσμος (কোসোমস) থেকে “বিশ্ব, মহাবিশ্ব” এবং λόγος (লোগো) “শব্দ, অধ্যয়ন” বা আক্ষরিক অর্থে “যুক্তিবিজ্ঞান”) মহাবিশ্ব বিশ্লেষণ হিসাবে বিবেচিত হতে পারে।
মহাবিশ্বের বৃহৎ-স্কেল কাঠামো পর্যবেক্ষণ করে যা দৈহিক সৃষ্টিতত্ত্ব হিসাবে পরিচিত, এটি মহাজাগতিক গঠনের এবং বিবর্তনের একটি গভীর উপলব্ধি প্রদান করেছে। আধুনিক কসমোলজির মূল ভিত্তি হল বিগ ব্যাং তত্ত্ব যা খুব ভালোভাবে স্বীকৃত , যেখানে আমাদের মহাবিশ্ব এক সময়ে এক বিন্দু থেকে শুরু হয়েছিল এবং তারপরে ১৩.৮ বিলিয়ন বছর ধরে প্রসারিত হয়ে এর বর্তমান অবস্থায় পৌঁছেছে । ১৯৬৫ সালে মাইক্রোওয়েভ ব্যাকগ্রাউন্ড রেডিয়েশন আবিষ্কারের পরে বিগ ব্যাং এর ধারণাটি খুঁজে পাওয়া যায়।
এই সম্প্রসারণের সময় মহাবিশ্বকে বিভিন্ন বিবর্তনমূলক পর্যায়ের মধ্য দিয়ে যেতে হয়েছে। খুব প্রারম্ভিক মুহূর্তে এটি তাত্ত্বিকভাবে মেনে নেয়া হয় যে মহাবিশ্ব খুব দ্রুত মহাজাগতিক মুদ্রাস্ফীতির সম্মুখীন হয়েছিল, যা শুরু হওয়া অবস্থার সমন্বয় সাধন করেছিল বলে ধারণা করা হয়। তারপরে, নিউক্লিওসিনথেসিস প্রথম বিশ্বজগতের মৌলিক প্রাচুর্য উৎপন্ন করেছিল।
প্রথম নিরপেক্ষ পরমাণু আদিম আয়নগুলির সমুদ্র থেকে গঠিত হয়েছিল, তখন মহাশূন্য বিকিরণের জন্য স্বচ্ছ হয়ে গিয়েছিল, যাকে আজকাল মাইক্রোওয়েভ পটভূমি বিকিরণ হিসাবে দেখা হয়। ক্রমবর্ধমান ইউনিভার্স তারপর অত্যাবশ্যক সোর শক্তির উৎস অভাবের কারণে একটি অন্ধকার যুগের মধ্য দিয়ে যেতে হয়েছিল।
বস্তুর একটি হায়ারারকিকাল গঠন শুরু হয়েছিল মহাশূন্যের গণ ঘনত্বের মিনিট বৈচিত্র্য থেকে। ঘনবসতিপূর্ণ অঞ্চলে বস্তু জমা হয়েছিল , গ্যাসের মেঘ তৈরি হচ্ছিল এবং নিকটতম নক্ষত্রগুলি যা তৃতীয় নক্ষত্রমণ্ডলি হিসাবে পরিচিত । এই বৃহৎ নক্ষত্রগুলি পুনরাবৃত্তি প্রক্রিয়ার সূত্রপাত করে এবং প্রাথমিক মহাবিশ্ব অনেকগুলি ভারী উপাদানের সৃষ্টি করেছে বলে বিশ্বাস করা হয়, যা পারমাণবিক ক্ষয় দ্বারা হালকা উপাদান তৈরি করে এবং নিউক্লিওসিনথেসিসের চক্রকে আরও দীর্ঘায়িত করতে পথ তৈরি করে দেয়।
মহাকর্ষীয় সমষ্টিগুলিকে ফিলামেন্টে ক্লাস্টার করে যার মধ্যে একটি ফাঁক রেখে দেয় । ধীরে ধীরে গ্যাস এবং ধূলিকণা সংস্থাগুলির মধ্যে প্রথম আদিম ছায়াপথ গঠন করা হয়। সময়ের সাথে সাথে এইগুলি আরও বেশি বস্তুকে টানে এবং প্রায়ই গ্যালাক্সির গোষ্ঠী এবং ক্লাস্টারগুলিতে সংগঠিত হয়েছিল, তারপর বৃহত্তর স্কেলে সুপারক্লাস্টারগুলিতে রূপান্তরিত হয়েছিল ।
মহাবিশ্বের মৌলিক কাঠামো মূলত অন্ধকার বিষয় এবং অন্ধকার শক্তির অস্তিত্বের উপর ভিত্তি করে গড়ে ওঠে । এই মহাবিশ্বের ৯৬% ভর প্রভাবশালী উপাদান দ্বারা গঠিত হয়েছিল বলে মনে করা হয়। এই কারণে এই উপাদানগুলির সাংগঠনিক বৈশিষ্ট্য বুঝতে অনেক প্রচেষ্টা ব্যয় করা হচ্ছে।
আন্তঃশিক্ষামূলক অধ্যয়ন
জ্যোতির্বিজ্ঞান এবং জ্যোতিঃপদার্থ অন্যান্য প্রধান বৈজ্ঞানিক ক্ষেত্রগুলির সাথে উল্লেখযোগ্য আন্তঃশিক্ষার সংযোগ তৈরি করেছে। প্রত্নতাত্ত্বিক জ্যোতির্বিজ্ঞান হল প্রাচীন বা ঐতিহ্যগত জ্যোতির্বিজ্ঞানের অধ্যয়ন যা তাদের সাংস্কৃতিক প্রেক্ষাপটে প্রত্নতাত্ত্বিক ও নৃতাত্ত্বিক প্রমাণ ব্যবহার করে। জ্যোতির্জীববিজ্ঞান হল ইউনিভার্সের জৈবিক পদ্ধতির আবির্ভাব এবং বিবর্তন নিয়ে গবেষণা সংক্রান্ত বিদ্যা যা অস্থায়ী জীবনযাপনের সম্ভাবনা সম্পর্কে বিশেষ জোর দিয়ে। জ্যোতিঃপরিসংখ্যান হল জ্যোতিঃপদার্থবিদ্যার পরিসংখ্যানগত প্রয়োগ যা পর্যবেক্ষণ মহাকাশবিজ্ঞান সংক্রান্ত বিশাল পরিমাণ তথ্য বিশ্লেষণ করে ।
মহাশূন্যে প্রাপ্ত রাসায়নিক উপাদান তাদের গঠন, মিথস্ক্রিয়া এবং ধ্বংস সহ যে বিষয়ে গবেষণা করা হয় তাকে জ্যোতিঃরসায়ন বলা হয়। এই পদার্থগুলো সাধারণত আণবিক মেঘে পাওয়া যায়, যদিও তারা কম তাপমাত্রার নক্ষত্র, বাদামী ড্যাফোর্ড এবং গ্রহগুলিতেও পাওয়া যেতে পারে। কসমোকেমিস্ট্রি হল সৌরজগতের মধ্যে পাওয়া রাসায়নিকের অধ্যয়ন সংক্রান্ত বিদ্যা যার মধ্যে রয়েছে উপাদানের উৎস এবং আইসোটোপ অনুপাতের বৈচিত্র্য। এই ক্ষেত্রগুলি উভয় জ্যোতির্বিদ্যা এবং রসায়ন বিষয়গুলির একটি ওভারল্যাপ হিসাবে প্রতিনিধিত্ব করে। “ফরেনসিক জ্যোতির্বিজ্ঞান” পরিশেষে, জ্যোতির্বিজ্ঞানের পদ্ধতিগুলি আইন ও ইতিহাসের সমস্যার সমাধান করার জন্য ব্যবহার করা হয়েছে।
পরিসর
জ্যোতিঃপদার্থবিজ্ঞানের যুগোপযোগী চর্চার ফলে জ্যোতির্বিজ্ঞানের পরিসর বিংশ শতাব্দীতে ব্যাপক প্রসারিত হয়েছে। মূলত বিংশ শতাব্দীকেই জ্যোতির্বিজ্ঞানের সূচনা, বিকাশ এবং পরিপক্বতার যুগ বলে অভিহিত করা চলে। তার উপর পারমাণবিক বিক্রিয়ার মৌলিক বৈশিষ্ট্যসমূহ আবিষ্কৃত হওয়ার ফলে বিভিন্ন নক্ষত্রের অভ্যন্তরে কিভাবে শক্তি উৎপন্ন হচ্ছে তার স্বরূপ বোঝা গেছে। এর অব্যবহিত ফল হিসেবেই মহাবিশ্বের শক্তির উৎস সম্বন্ধে বিস্তারিত গবেষণা করা সম্ভব হয়েছে এবং জন্ম হয়েছে বিশ্বতত্ত্বের (Cosmology)। বিশ্বতত্ত্বের মূল আলোচ্য বিষয় মহাবিশ্বের উৎপত্তি এবং বিবর্তন। এ সব কিছুর ফলেই আমরা আজ জানি যে, পৃথিবীতে প্রাপ্ত পরমাণুগুলো মহাবিশ্বের বিবর্তনের এমন একটি সময়ে সৃষ্টি হয়েছিল যখন ধূলিমেঘ ছাড়া আর কোন কিছুরই অস্তিত্ব ছিল না। আর সেই ধূলিমেঘের মধ্যে প্রথমে কেবল হাইড্রোজেনেরই অস্তিত্ব ছিল। এভাবেই এই বিজ্ঞান অনেকদূর এগিয়ে গেছে যা একই সাথে মানুষকে এগিয়ে রাখার ক্ষেত্রে সবচেয়ে অগ্রণী ভূমিকা পালন করছে; কারণ জ্যোতির্বিজ্ঞানের মাধ্যমেই সবচেয়ে সফল ভবিষ্যদ্বাণী করা সম্ভব।
তবে জ্যোতির্বিজ্ঞানের সর্বপ্রধান সীমাবদ্ধতা বা অন্য যাই বলা হোক না কেন তা হল এটি এখনও একটি খাঁটি পর্যবেক্ষণমূলক বিজ্ঞান। অনেক দূরবর্তী বস্তুসমূহ নিয়ে গবেষণা করতে হয় বিধায় এতে পরীক্ষণের সুযোগ খুবই সীমিত। তাছাড়া যে বস্তুসমূহ নিয়ে পরীক্ষা নিরীক্ষা করতে হয় সেগুলোর তাপমাত্রা, চাপ বা রাসায়নিক গঠন সম্পর্কে কোনও তথ্যকেন্দ্রিক নিয়ন্ত্রণ থাকা সম্ভব নয়। তবে বর্তমান যুগে এই বিজ্ঞানের বেশ কয়েকটি উল্লেখযোগ্য পরীক্ষণ চালনা সম্ভব হয়েছে; যেমন: ভূপৃষ্ঠে পতিত উল্কাপিণ্ড, পাথর বা চাঁদ থেকে নিয়ে আসা মাটি নিয়ে বিস্তর গবেষণা সম্ভব হয়েছে। এর সাথে পৃথিবীর বায়ুমণ্ডলের স্ট্র্যাটোস্ফিয়ার স্তরে প্রাপ্ত ধূলিকণা নিয়ে গবেষণাও এর অন্তর্ভুক্ত। এভাবে জ্যোতির্বিদ্যা পর্যবেক্ষণ ক্ষেত্রেও প্রসিদ্ধি লাভ করছে। ভবিষ্যতে হয়তোবা ধূমকেতুর ধূলিকণা বা মঙ্গল গ্রহের মাটি নিয়ে মহাশূন্যযানে বসেই গবেষণা করা যাবে। তবে এসব গবেষণার বেশির ভাগই পৃথিবীকেন্দ্রিক। পর্যবেক্ষণকাজে বিজ্ঞানের অন্য শাখাসমূহের সাহায্য এখানে মুখ্য। সহযোগী শাখাসমূহের মধ্যে আছে পদার্থবিজ্ঞান, রসায়ন, অণুজীববিজ্ঞান, প্রত্নতত্ত্ব ইত্যাদি।
কমা একটি ধূমকেতু এর নিউক্লিয়াস কাছাকাছি আবছায়া আচ্ছাদন , ধূমকেতু যখন তার অত্যন্ত উপবৃত্তাকার কক্ষপথে সূর্যের কাছে যায় তখন গঠিত হয় ; ধূমকেতু উষ্ণতা হিসাবে, এর অংশগুলি অতিপ্রাকৃত[১] এটি একটি ধূমকেতু একটি “অস্পষ্ট” চেহারা দেয় যখন টেলিস্কোপে দেখা যায় এবং তারকা থেকে এটি আলাদা করে। কমা শব্দটি এসেছে গ্রীক শব্দ “kome” (κόμη) থেকে , যার অর্থ “চুল” এবং যার থেকে ধূমকেতু শব্দটির উৎপত্তি [২][৩]
ইনফ্রারেডে ধূমকেতু হোলসের কাঠামো,একটি ইনফ্রারেড স্পেস টেলিস্কোপে দেখা
কক্ষপথ (ইংরেজি Orbit) বলতে কোন একটি বস্তুর কেন্দ্রমুখী বলের প্রভাবে অপর একটি বস্তুর চারদিকে ঘোরার পথকে বোঝায়। পদার্থবিদ্যায় কক্ষপথ বলতে বোঝায় মহাকর্ষীয় বলের ফলে কোন বস্তুর বক্র পরিক্রমণ পথ। উদাহরণস্বরূপ একটি নক্ষত্রকে ঘিরে কোনো গ্রহের প্রদক্ষিণ।[১][২] সাধারণত গ্রহের কক্ষপথ হয় উপবৃত্তাকার। কক্ষীয় গতি সম্পর্কিত বলবিদ্যার বর্তমান ধারনাটির ভিত্তি হল আলবার্ট আইনেস্টাইনেরসাধারণ আপেক্ষিকতা।
ইতিহাস
আধুনিক কক্ষপথ বোঝার জন্য যে ভিত্তি সেটি প্রথম জোহানেস কেপলার এর তিনটি সূত্র দ্বারা প্রণয়ন করা হয়েছিল। প্রথমত, তিনি দেখেন যে আমাদের সৌরজগৎের গ্রহগুলোর কক্ষপথ, উপবৃত্তাকার না বৃত্তাকার । এবং সূর্য কক্ষপথের কেন্দ্রে অবস্থিত নয়। দ্বিতীয়ত, সূর্য থেকে কোন গ্রহ পর্যন্ত একটি সরল রেখা কল্পনা করা হয়, তাহলে গ্রহটি চলাকালে কল্পিত রেখাটি সমান সময়ে সমান ক্ষেত্র রচনা করবে। তৃতীয় ছিল প্রতিটি গ্রহের প্রদক্ষিণের কালপর্বের বর্গ উপবৃত্তটির প্রধান অক্ষের ঘনফলের সমানুপাতিক।
ওরিয়ন প্রকল্প হল বিংশ শতাব্দীর পঞ্চাশের দশকে পরিচালিত একটি গবেষণা যা করা হয়েছিল কোন নভোযানের পিছনে কিছু পারমাণবিক বোমার ক্রমিক বিস্ফোরণ ঘটিয়ে নভোযানটিকেপ্রচালিত করার ধারণা (পারমাণবিক স্পন্দিত প্রচালন) নিয়ে । তখন এ ধরনের নভোযান ভূপৃষ্ঠ থেকেই উড্ডয়ন করবার জন্য নকশা করা হয়েছিল, যা করা হলে প্রচালন এর সময় উড্ডয়নস্থলের আশেপাশের পরিবেশে উল্লেখযোগ্য পরিমাণে তেজস্ক্রিয় পারমাণবিক অবশেষ ছড়িয়ে পড়ার আশঙ্কা ছিল । অবশ্য পরবর্তীকালে এ ধরনের নভোযানের নকশা নভোযানটিকে শুধুমাত্র মহাকাশে ব্যবহারের জন্যই উপস্থাপন করা হয় ।
বিস্ফোরক দ্রব্যাদির দহনের মাধ্যমে রকেট প্রচালনের এ ধারণাটি ১৮৮১ খ্রিষ্টাব্দে প্রথম উপস্থাপন করেছিলেন রুশ বিস্ফোরণ বিশেষজ্ঞ নিকোলাই কিবালচিচ এবং বিচ্ছিন্নভাবে একই ধারণা নিয়ে ১৮৯১ খ্রিষ্টাব্দে কাজ করেছিলেন জার্মান প্রকৌশলী হারম্যান গ্যান্সউইন্দ । পারমাণবিক প্রচালন নিয়ে ১৯৪৬ সালে সাধারণ প্রস্তাবনা করেন স্টানিস ল উলাম এবং ১৯৪৭ সালে স্টানিস ল উলাম এবং ফ্রেডরিক রেইনিস যৌথভাবে এর প্রাথমিক হিসেব নিকেশ করেন একটি লস আলামোস স্মারকপত্রে[১] । আসল প্রকল্পটি শুরু হয় ১৯৫৮ সালে, পরিচালনায় ছিলেন জেনারেল অ্যাটমিকসেরটেড টেইলর এবং পদার্থবিদ ফ্রিম্যান ডাইসন যিনি টেইলরের অনুরোধে ইন্সটিটিউট ফর অ্যাডভান্সড স্টাডি থেকে এক বছর কাজের অব্যাহতি নেন এই প্রকল্পটিতে কাজ করার জন্যে ।
ওরিয়ন প্রকল্পের মাধ্যমে একই সাথে উচ্চ মাত্রার জ্বালানির কর্মদক্ষতার পাশাপাশি অতি উচ্চ মাত্রার প্রতিক্রিয়া বল পাওয়ার সম্ভাবনা দেখা দেয় । এতে যে উচ্চ মাত্রার শক্তি প্রয়োজন, তা মিটিয়ে দেবে পারমাণবিক বিস্ফোরণ । এই বিস্ফোরণগুলোকে নভোযানের ভরের সাপেক্ষে এতটা শক্তিশালী হতে হবে যাতে করে নভোযানের ভিতরের গঠনে কোন প্রভাব না ফেলে বিস্ফোরণগুলোকে বাইরে ঘটিয়েই ফল পাওয়া যায় । তখনকার সময়ে প্রচলিত নভোযানগুলোর সাথে ওরিয়ন প্রকল্পের নভোযানের একটা বৈশিষ্ট্যমূলক তুলনা তুলে ধরা যাক । ঐ সময়ে প্রচলিত রাসায়নিক শক্তিতে চালিত রকেট সমূহ, যেমন স্যাটার্ন V (স্যাটার্ন ফাইভ) যেটা অ্যাপোলো প্রোগ্রামকে চাঁদে নিয়ে গিয়েছিল, এই ধরনের রকেটগুলির ইঞ্জিন অতি উচ্চ মাত্রার প্রতিক্রিয়া বল দিতে পারে যদিও জ্বালানির কর্মদক্ষতা অনেক কম থাকে । আবার বৈদ্যুতিক আয়ন ইঞ্জিনগুলো খুব অল্প পরিমাণ প্রতিক্রিয়া বল দিতে পারে, তবে জ্বালানির কর্মদক্ষতা এ ক্ষেত্রে পাওয়া যায় অনেক বেশি । ঐ সময়কার সবচেয়ে উন্নত প্রযুক্তির পারমাণবিক ইঞ্জিনগুলির তুলনায় ওরিয়ন অনেক ভালো কর্মদক্ষতার ও উপযোগিতার আশ্বাস দিয়েছিল । ওরিয়ন প্রকল্পের পক্ষপাতীরা মনে করতেন এই প্রকল্প দ্বারা খুব কম খরচে আন্তঃসৌরমণ্ডলীয় যাতায়াত সম্ভব হবে । যদিও এই প্রকল্পটি খুব দ্রুতই রাজনৈতিক অসম্মতির সম্মুখীন হয়, যার প্রধান কারণ প্রচালন এর সময় পরিবেশে তেজস্ক্রিয় পারমাণবিক অবশেষ ছড়িয়ে পড়ে মারাত্মক পরিবেশ দূষণের ঝুঁকি ।[২]
ওরিয়ন প্রকল্পটি বন্ধ হয়ে গিয়েছিল মূলত ১৯৬৩ খ্রিষ্টাব্দে স্বাক্ষরিত পারমাণবিক অস্ত্র পরীক্ষার আংশিক সীমিতকরণ চুক্তির কারণে । যদিও পরবর্তীকালে অনেক প্রকল্প প্রস্তাব করা হয়েছে যেগুলো প্রকৌশলগত যেকোন বিশ্লেষণকে তাপীয় শক্তি ব্যবহার করতে বিবেচনা করার পর্যায়ে নিয়ে গিয়েছিল, যেমন লংশট প্রকল্প, দেদালুস প্রকল্প এবং মিনি-ম্যাগ ওরিয়ন । এ ধরনের প্রকল্পগুলির প্রতিটিতেই বাইরে থেকে তরঙ্গ আকারে শক্তি পাঠিয়ে প্রচালন (তরঙ্গায়িত শক্তি দিয়ে প্রচালন) করার ঝামেলা এড়িয়ে উচ্চ কর্মদক্ষতাসম্পন্ন আন্তঃসৌরমণ্ডলীয় যাতায়াতকে সম্ভব করতে নবায়নযোগ্য শক্তির সর্বোচ্চ ব্যবহারের জন্যে গুরুতর কিছু ধারণা প্রস্তাব করা হয় । প্রতিটি প্রকল্পের জন্যে প্রস্তাবিত ধারণাগুলির মধ্যে বিতর্কিত পারমাণবিক স্পন্দিত প্রচালন এর মূলনীতিটি ছিল সাধারণ । অবশ্য পরবর্তীকালে প্রস্তাবিত এই প্রকল্পগুলিতে মূলনীতিটির অনেক পরিবর্তন করা হয় । এমন সব যন্ত্রপাতি ব্যবহারের সিদ্ধান্ত নেওয়া হয় যাতে ব্যবহৃত পেলেটের বিস্ফোরণের কারণ হিসেবে প্রকল্পভেদে খুব কম পরিমাণে নিউক্লীয় ফিশন বা নিউক্লীয় ফিউশন হয় । কিন্তু ওরিয়ন প্রকল্পের চিত্র ছিল একেবারে বিপরীত, এতে ব্যবহৃত পারমাণবিক স্পন্দিত প্রচালন এর ইউনিট (পারমাণবিক বোমা) ছিল ঐসব প্রকল্পের থেকে অনেক বড় পরিসরের এবং সেগুলো তৈরিতে ঐসব প্রকল্পের মতো ধারনামূলক প্রযুক্তি অপেক্ষাকৃত কম ব্যবহৃত হয়েছিল ।
২০০৩ সালে এই প্রকল্প নিয়ে নির্মিত একটি বিবিসি তথ্যমূলক চলচ্চিত্র হল To Mars by A-Bomb: The Secret History of Project Orion ।[৩]
সচরাচর আন্তঃসৌরমণ্ডলীয় যাতায়াতের জন্য মুক্তিবেগ দরকার পড়ে অনেক বেশি, ১৯ থেকে ৩১ কি মি/সে (১২ থেকে ১৯ মাইল/সে) । অন্যান্য নভোযান প্রচালন এর প্রযুক্তি হয় উচ্চ মুক্তিবেগ না হয় উচ্চ প্রতিক্রিয়া বল, যেকোনো একটি দিতে পারে । ওরিয়ন প্রকল্পের নিউক্লীয় পালস রকেটই (পারমাণবিক স্পন্দিত প্রচালন দ্বারা পরিচালিত রকেট) একমাত্র প্রস্তাবিত প্রযুক্তি যা উচ্চ মুক্তিবেগের সাথে অনেক মেগানিউটন প্রতিক্রিয়া বল দিয়ে উচ্চ কর্মক্ষমতার নিশ্চয়তা দেয় । (বিভিন্ন প্রচালন ব্যবস্থার সাথে পরিচিত হতে চাইলে দেখুন নভোযান প্রচালন )
জ্বালানির কর্মদক্ষতা (Isp) বলতে প্রতি একক ভরের জ্বালানি থেকে কতটুকু প্রতিক্রিয়া বল পাওয়া যাবে তা বোঝায় । এ পরিমাপটি রকেটবিদ্যার জগতে কর্মক্ষমতা প্রকাশের জন্যে একটি আদর্শ । যেকোনো রকেট প্রচালনের ক্ষেত্রে, যেহেতু গতিশক্তি বেগের বর্গের সমানুপাত হারে বাড়ে(গতিশক্তি = ½ mv2) এবং ভরবেগ ও প্রতিক্রিয়া বল বাড়ে বেগের সমানুপাতিক (ভরবেগ = mv) হারে, সেহেতু মুক্তিবেগ এবং জ্বালানির কর্মদক্ষতা যত বেশি হবে, একটি নির্দিষ্ট মাত্রার প্রতিক্রিয়া বল (অভিকর্ষজ ত্বরণ(g) এর মানের গুণিতক আকারে) অর্জন করতে তত বেশি শক্তি লাগবে(উদাহরণ হিসেবে বলা যায় যে, প্রস্তাবিত বৈদ্যুতিক প্রচালন ব্যবস্থা যেটাতে কিনা উচ্চ জ্বালানির কর্মদক্ষতা, Isp প্রয়োজন, সে তুলনায় অনেক কম প্রতিক্রিয়া বল দেয় । কেননা তারা ব্যবহারের জন্য শক্তি পায় খুব সীমিত মাত্রায় । তাদের ক্ষেত্রে প্রতিক্রিয়া বল থাকে জ্বালানির কর্মদক্ষতার ব্যস্তানুপাতিক যদি শক্তি ব্যয়ের হার ধ্রুব হয় কিংবা যেকোনো প্রকৌশলজনিত সমস্যার কারণে তাপ আকারে শক্তি হারিয়ে যায় ) [৫] ওরিয়ন প্রকল্পের একটি নভোযান পারমাণবিক কিছু বিস্ফোরণ ঘটিয়ে যে পরিমাণ শক্তি বাইরের পরিবেশে নির্গমন করতে পারে, এই নির্গমন হার এতটাই বেশি যা তেজস্ক্রিয়া থেকে রক্ষা পাওয়ার জন্যে এখন পর্যন্ত জানা যত পদার্থ এবং যত রক্ষণশীল নকশা আছে যা দিয়ে একটি পারমাণবিক চুল্লীকে অভ্যন্তরীণ তেজস্ক্রিয়তা থেকে রক্ষা করা যায়, তাদের যেকোনোটির সাধ্যের বাইরে ।